Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

L (0.0424g, 0 . 2mmol), cu (CF 3 SO 3) 2 (0.0691g, 0 . 2mmol), H 2 O (6 ml) CH 3 CN (4 ml), water heat 100 o C drop to the room temperature slowly after three days. After operates the cauldron a suitable for X-ray crystal diffraction analysis of the yellow rod-like crystal. Yield: 35% (calculated based on L).

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104447804; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.,7787-70-4

Complex 2 was obtained by a similar method as described for 1 using copper(I) bromide (0.032 g,0.22 mmol) in place of copper(I) iodide. Colorless crystals of 2 were obtained (Yield: 0.191 g, 90.3%). 1HNMR (400 M, CDCl3) delta: 7.51-7.36 (m, 22H, m,p-Ph + H3,H4-PC6H4-), 7.33-7.27 (m, 4H, H5,H6-PC6H4-),7.12-7.00 (m, 12H, o-Ph). 13C NMR (100 M, CDCl3) delta: 147.87, 147.67, 140.24, 140.16, 134.31, 134.17, 133.45,131.80, 131.07, 130.71, 130.14, 129.90, 128.93, 128.69, 127.93, 127.26 (Ar-C). 31P NMR (240 M, CDCl3) delta:-9.70 (s). Anal. Calcd for C48H38Cu2Br2P2: C, 59.83; H, 3.97. Found: C, 59.88; H, 3.97. MS (MALDI-TOF): m/zCalcd for [M-2Br-Cu + C24H19P]+, 739.1745, found 739.1747.

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Reference£º
Article; Qi, Lei; Li, Qian; Hong, Xiao; Liu, Li; Zhong, Xin-Xin; Chen, Qiao; Li, Fa-Bao; Liu, Qian; Qin, Hai-Mei; Wong, Wai-Yeung; Journal of Coordination Chemistry; vol. 69; 24; (2016); p. 3692 – 3702;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(II) trifluoromethanesulfonate

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.

Ligand H2L1 (100 mg, 0.254 mmol) wasadded to the clear solution ofCu(OTf)2 (275 mg, 0.763 mmol)in 10 mL MeNO2 forming a clear light blue colored solutionand the reaction mixture was stirred for 30 min at 50 C.The light blue solution thus formed was filtered and left inopen air for slow evaporation. Blue-green crystals suitable forX-ray structural analysis were formed after 24 h. (Yield: 76%)Anal. Calcd. for C26H36Cu4F12N10O32S4: C, 19.38; H, 2.25;N, 8.69%. Found. C, 19.12; H, 2.65; N, 8.50%. IR (nu, cm-1):3501.15 (H2O); 1674.56 (C=O); 1644.45 (C=N).

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(II) trifluoromethanesulfonate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

A mixture of Cu(CF3SO3)2 (200 mg, 0.55 mmol) and ligand L(190 mg, 0.55 mmol) in a mixture of MeOH:CH2Cl2 in 1:1 volumeratio (30 mL) was stirred at room temperature for 24 h. The productwas isolated by evaporation of solvents and recrystallization of the residuefrom a minimum volume of MeOH by the gradual addition ofdiethyl ether to obtain complex 5 as a green solid. Crystal appropriatefor X-ray diffraction was obtained by vial to vial diffusion at 4 C.Yield: 80.3% (335 mg, 0.44 mmol).ESI-MS: m/z (%) = 345 [H + L]+ (100), 407 [Cu(L-H)]+ (90). IR(KBr): nu(CH)ar 3053; nuas(CH3) 2972; nus(CH3) 2877; nu(C=N)imin1553; nu(C=C)ar 1581, 1547, 1525, nu(CN) 1488, 1422; nu(C=N)ar1279, 1235, rho(CH)ar 1187, 1172, 1137; gamma(CH)ar 891, 782, 723,551 cm-1. Anal. calc. for [Cu(C20H16N4S)(CF3SO3)(MeOH)(H2O)](CF3SO3)] (756.17): C, 36.53; H, 2.93; N, 7.41; Found: C, 36.40; H, 2.99;N, 7.35%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

Reference£º
Article; Bocian, Aleksandra; Gorczy?ski, Adam; Marcinkowski, Damian; Witomska, Samanta; Kubicki, Maciej; Mech, Paulina; Bogunia, Ma?gorzata; Brzeski, Jakub; Makowski, Mariusz; Pawlu?, Piotr; Patroniak, Violetta; Journal of Molecular Liquids; vol. 302; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.

The ligand (50.0 mg, 0.11 mmol) was added to a suspension of copper(II) halogenide (0.11 mmol) in methanol (3 ml). The mixture was stirred at r. t. for 16 h. The precipitate was then filtered off and dried in vacuo. The pure compounds were obtained by recrystallization from dichloromethane and pentane.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(I) bromide

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

A yellow solution of 168.0 mg (0.736 mmol) of 2b in toluene (10 mL) was added to a green CH3CN solution (20 mL) containing 105.6 mg (0.736 mmol) CuBr with stirring at ambient temperature. The reaction mixture was allowed to stir overnight forming a dark green precipitate. The solution was filtered, and the precipitate washed with cold MeOH (5 mL) and dried under vacuum (57.9 mg, 17% yield). 1H and 13C{1H} NMR spectra could not be recorded due to strong paramagnetic properties of complex. FTIR (KBr) 3425, 3056, 3006, 2918, 1627, 1593, 1466, 1436, 1300, 1269, 1236, 1201, 1157, 1106, 1092, 1069, 1046, 967, 958, 914, 849, 774, 767, 744, 694, 652, 567, 543, 501, 458, 417 cm-1. Anal. Calc’d. for C13H12Br2CuN2S: C = 34.57%, H = 2.68%, N = 6.20%. Found: C = 34.17%, H = 3.36%, N = 6.44%. UV-vis (DMF, 0.050 mg/mL) lambdamax (epsilon) = 266 (7.6 * 103), 353.

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Cross, Edward D.; Ang, M. Trisha C.; Richards, D. Douglas; Clemens, Amy C.; Muthukumar, Harshiny; McDonald, Robert; Woodfolk, London; Ckless, Karina; Bierenstiel, Matthias; Inorganica Chimica Acta; vol. 481; (2018); p. 69 – 78;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 5-Fluoro-2-methylbenzo[d]oxazole

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 34946-82-2, Copper(II) trifluoromethanesulfonate

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Ligand L2/L2? (15.2 mg, 63 mumol) was dissolved in ethylacetate (5 mL) and a solution of Cu(OTf)2 (11.4 mg, 31.5mumol) in ethyl acetate (3 mL) was added. The blue precipitatewas isolated by filtration with suction and dried at air;yield: 26 mg (98%). Crystals suitable for X-ray diffractionanalysis were obtained when a solution of the precipitatein the necessary amount of ethyl acetate was concentratedby slow evaporation. M.p. 255.5-256.5C. – IR (KBr): IR(KBr): = 3259 s br (NH), 3151 w, 1643 m, 1591 s, 1500 m,1285 vs, 1243 vs, ~1228 sh, 1159 s, 1028 vs, 720 m, 636 s,574 w, 518 m cm-1. – MS ((+)-MALDI-TOF): m/z (%) = 694.15(100) [M-CF3SO3]+, 1539.24 (8) [2 [CuL2L2?(OTf)2]-OTf]. -Anal. for C28H30CuF6N10O6S2 (844.27), water-free sample:calcd. C 39.83, H 3.58, N 16.59; S 7.59; found C 39.62, H 3.41,N 16.64, S 7.61.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 34946-82-2, Copper(II) trifluoromethanesulfonate

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 7787-70-4

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.

2-(Carboxy-5-nitrophenyl)malonic acid dimethyl ester (8) A solution of 2-chloro-4-nitrobenzoic acid (75 g, 372 mmol) in dimethyl malonate (900 mL) was perfused with nitrogen for 15 min. Sodium methoxide (48.3 g, 894 mmol) was added in one portion and the contents exothermed to 48 C. Fifteen minutes later, copper (I) bromide (5.4 g, 37 mmol) was added in one portion and the contents were heated to 70 C. for 24 hrs. The reaction, which was 70% complete as determined by NMR, was subsequently heated to 85 C. for 5 hrs to completely consume the remaining 2-chloro4-nitrobenzoic acid. Water (900 mL) was added to the cooled reaction followed by hexanes (900 mL). The aqueous layer was separated, toluene (900 mL) was added, the mixture was filtered and aqueous layer separated. Fresh toluene (1800 mL) was added to the aqueous layer and the biphasic mixture acidified with 6N aqueous HCl (90 mL). A white precipitate formed and the contents were stirred for 18 hrs. The product was filtered off and dried to give a white solid (78.1 g, 70%) mp 153 C. 1 H NMR (DMSO) delta8.37 (d, J=2 Hz, 1H), 8.30 (d, J=1 Hz, 2H), 5.82 (s, 1H), 3.83 (s, 6H). 13 C NMR (DMSO) delta168.0, 167.3, 149.4, 137.1, 135.8, 132.5, 125.4, 123.7, 54.5, 53.4. Anal. Calcd for C11 H10 NO8: C, 48.49; H, 3.73; N, 4.71. Found: C, 48.27; H, 3.72; N, 4.76.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Pfizer Inc; US6121283; (2000); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: 0.018g (0.182mmol) of CuCl was added to 0.340g (0.205mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution. After stirring the resultant solution for 1hat RT, the yellowish brown solution formed, which was filtered, and solvent was removed in vacuo. The precipitate was washed with Et2O and extracted with THF, then recrystallized with Et2O/MeOH/THF to give [PPh4]2[2a] (0.250g, 0.143mmol, 79% based on CuCl). Similarly, under the same reaction conditions, using CuBr and CuI, we have isolated a yellowish brown solid of [PPh4]2[2b] (96% based on CuBr) and [PPh4]2[2c] (71% based on CuI), respectively, upon crystallization from Et2O/THF.

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67416; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”