Introduction of a new synthetic route about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

With the synthetic route has been constantly updated, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),14172-91-9,Molecular formula: C44H30CuN4,mainly used in chemical industry, its synthesis route is as follows.,14172-91-9

0.0157 g (0.088 mmol) of N-bromosuccinimide was added to a solution of 0.04 g (0.059 mmol) of Cuin 20 mL of l3, and the mixture was refluxed during 30 min. The operation was repeated three times,total amount of the added N-bromosuccinimide being0.047 g (0.26 mmol). After addition of the last portion of the reactant, the mixture was refluxed during 2 hand cooled to ambient; a solution of 0.07 g (0.44 mmol)of bromine in 5 mL of CHCl3 was then added atstirring. The resulting mixture was kept at 20 during about 24 h. Excess of bromine was removed by washing the reaction mixture with 15 mL of 20%aqueous solution of Na2S2O3. The organic layer was washed with water and dried over Na2SO4. The solvent was removed, and the residue was purified by chromatographyon alumina eluting with chloroform,followed by recrystallization from ethanol. Yield 0.055 g(72%, 0.0421 mmol).

With the synthetic route has been constantly updated, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Continuously updated synthesis method about Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

General procedure: Compound 5c was prepared as described for 5a. In this respect, 2 (100 mg, 0.160 mmol) was reacted with [CuBr] (3c) (23 mg, 0.160 mmol). Appropriate work-up, gave 5c (111 mg, 0.144 mmol, 90% based on 2) as a brown solid Mp.: 180 C. IR (KBr, cm-1): nuC?C 1983 (w). 1H NMR (d6-DMSO, delta): 0.24 (s, 9 H, SiMe3), 0.30 (s, 9 H, SiMe3), 7.61 (ddd, 3JH7H6 = 4.7 Hz, 3JH7H8 = 7.3 Hz; 1 H, H7), 7.95 (ddd, 3JH2H1 = 6.3 Hz, 3JH2H3 = 6.6 Hz; 1 H, H2), 8.07 (ddd, 4JH8H6 = 1.5 Hz, 3JH8H7 = 7.3 Hz, 3JH8H9 = 7.8 Hz; 1 H, H8), 8.43 (m, 4JH3H1 = 1.0 Hz, 3JH3H2 = 6.6 Hz; 3JH3H4 = 8.0 Hz, 3JH9H8 = 7.8 Hz; 2 H, H3, H9), 8.67 (dd, 3JH6H7 = 4.7 Hz, 4JH6H8 = 1.5 Hz, 1 H, H6), 8.85 (d, 3JH4H3 = 8.0 Hz, 1 H, H4), 9.05 (dd, 3JH1H2 = 6.3 Hz, 1 H, 4JH1H3 = 1.0 Hz, 1 H, H1), 9.95 (s, 1 H, H5), 10.06 (s, 1 H, H10). ESI-MS (m/z (rel. intens.) in thf: [M++Br] 687 (100), [M+-CuBr + K] 662 (25). Anal. Calc. for C24H28N4CuBrPtSi2 (767.21 g/mol): C, 37.57; H, 3.67; N, 7.30. Found: C, 37.68; H, 3.63; N, 6.92%.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Al-Anber, Mohammed; Wetzold, Nora; Walfort, Bernhard; Rueffer, Tobias; Lang, Heinrich; Inorganica Chimica Acta; vol. 398; (2013); p. 124 – 131;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Sources of common compounds: Cuprouschloride

With the rapid development of chemical substances, we look forward to future research findings about 7758-89-6

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7758-89-6, Cuprouschloride it is a common compound, a new synthetic route is introduced below., 7758-89-6

Step 5. 3,3-Ethylenedioxy-5alpha-hydroxy-11beta-[4-(N,N-dimethylamino)phenyl]-17alpha-trimethylsilyloxy-21-methyl-19-norpregn-9(10)-en-20-one (25): Mg (2.80 g, 116.2 mmol), which was washed with 0.1 N HCl, then H2O and acetone and dried in vacuo, was weighed into dry round-bottomed flask equipped with a reflux condenser. A small crystal of iodine was added and the system was flushed with nitrogen and flame-dried. The flask was cooled to room temperature and 68.5 mL of THF distilled from LAH was added via syringe. 1,2-Dibromoethane (approx. 0.5 mL) was added and the mixture was stirred at room temperature. After bubbling began and the color of I2 disappeared, a solution of 4-bromo-N,N-dimethylaniline (20.43 g, 102.1 mmol) in THF (34 mL) was added via syringe. The mixture was stirred until most the Mg had reacted. Copper (I) chloride (1.13 g, 114.2 mmol) was added as a solid and stirred for 20 min. The crude epoxide (24) (7.33 g, 15.91 mmol) in THF (49 mL) was then added using a syringe. The reaction mixture was stirred at room temperature for 30 min, at which time the reaction was complete by TLC (2% acetone/CH2Cl2). Saturated NH4Cl solution (25 mL) was added and stirred for 30 min while air was pulled through by slight vacuum. The mixture was diluted with H2O, extracted with CH2Cl2 (3*), washed with H2O (2*) and brine, dried over Na2SO4, and evaporated under reduced pressure. The residue was purified by flash chromatography using 3% acetone/CH2Cl2) to afford 4.27 g of the pure product (25) in 46.1% yield. IR (KBr, diffuse reflectance) numax 3531, 2940, 1708, 1614, and 1518 cm-1. NMR (CDCl3) delta 0.09 (s, 9H, Si(CH3)3), 0.19 (s, 3H, C18-CH3), 1.02 (t, J=7 Hz, 3H, C21-CH3), 2.88 (s, 6H, N(CH3)2), 3.99 (m, 4H, C3-OCH2CH2O-), 4.26 (br d, 1 H, C11alpha-CH), 6.85 (dd, J=41 Hz, J’=10 Hz, 4H, aromatic-CH). MS (EI) m/z (relative intensity): 581 (M+, 46), 563(34), 391 (37), 134(65) and 121 (100).

With the rapid development of chemical substances, we look forward to future research findings about 7758-89-6

Reference£º
Patent; The United States of America as represented by the Department of Health and Human Services; US6900193; (2005); B1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.578743-87-0,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,as a common compound, the synthetic route is as follows.,578743-87-0

Carbazole (83.6mg, 0.5mmol) and NaH (12 mg, 0.5 mmol) was mixed with THF and 15 ml, atroom temperature under a nitrogen atmosphere until bubbling ceased (15 min) and stirred.Chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] was added copper (I) ((IPr) CuCl)(243.8mg, 0.5mmol), the reaction mixture was stirred for one hour did. Then, the mixture wasfiltered through a plug of Celite (registered trademark) under an inert atmosphere, and thesolvent was removed by rotary evaporation. The product was obtained as a white solid (170mg,55%).

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Universal Display Corporation; Mark, E. Thomson; Peter, I. Jurobitchi; Valentina, Krirowa; (66 pag.)JP2015/91800; (2015); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Sources of common compounds: Copper(II) acetate hydrate

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate hydrate

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.6046-93-1, Copper(II) acetate hydrate it is a common compound, a new synthetic route is introduced below., 6046-93-1

meso-Tetraphenylporphyrin (TPP)(2 g, 3.25 mmol) was dissolved in CH2Cl2 (160 mL) and methanol (50 mL). Cu(OAc)2¡¤H2O (1.2 g,5.85 mmol) was added and the mixture was heated to reflux for 2 h until all starting material wasconsumed (TLC, UV-vis). Solvents were evaporated to give a red-purple residue that was filteredthrough a short plug of silica. After filtration, the product 3 was obtained as a dark purple sparklingsolid (2.2 g, 3.25 mmol, 99%)

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate hydrate

Reference£º
Article; Blom, Magnus; Norrehed, Sara; Andersson, Claes-Henrik; Huang, Hao; Light, Mark E.; Bergquist, Jonas; Grennberg, Helena; Gogoll, Adolf; Molecules; vol. 21; 1; (2016);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO138,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

Ligand H2L1 (100 mg, 0.254 mmol) wasadded to the clear solution ofCu(OTf)2 (275 mg, 0.763 mmol)in 10 mL MeNO2 forming a clear light blue colored solutionand the reaction mixture was stirred for 30 min at 50 C.The light blue solution thus formed was filtered and left inopen air for slow evaporation. Blue-green crystals suitable forX-ray structural analysis were formed after 24 h. (Yield: 76%)Anal. Calcd. for C26H36Cu4F12N10O32S4: C, 19.38; H, 2.25;N, 8.69%. Found. C, 19.12; H, 2.65; N, 8.50%. IR (nu, cm-1):3501.15 (H2O); 1674.56 (C=O); 1644.45 (C=N).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : Copper(II) trifluoromethanesulfonate

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of imidazo[l,2-b]pyridazine (impy) (758 mg, 6.36 mmol, 10 equiv.) in MeOH (1 mL) was added dropwise at 55C to a solution of Cu(OTf)2 (230 mg, 0.636 mmol, 1.0 equiv.) in MeOH (1 mL). The blue precipitate which formed was washed with Et20 (3 x 2 mL), then recrystallized from hot MeOH to afford [Cu(OTf)2(impy)4] (324 mg, 0.387 mmol. 61%). Anal. Calcd. for C26H2OCUF6NI206S2: C, 37.26; H, 2.41; N, 20.05. Found: C, 37.07; H, 2.33; N, 19.91; IR (ATR, neat): v (cm 1) = 2981, 1620, 1541, 1503, 1374, 1352, 1306, 1281, 1241, 1221, 1149, 1071, 1027, 950, 918, 879, 801, 755, 733, 632.

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; OXFORD UNIVERSITY INNOVATION LIMITED; GOUVERNEUR, Veronique; CORNELISSEN, Bart; WILSON, Thomas Charles; (152 pag.)WO2019/186135; (2019); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extended knowledge of Copper(I) bromide

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 7787-70-4, Copper(I) bromide. This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.7787-70-4

General procedure: A solution of cuprous chloride (5.8 mg, 0.058 mmol) in acetonitrile(10 mL) was added dropwise to a well stirred solution of 1(30 mg, 0.058 mmol) in dichloromethane (10 mL) at room temperaturewith constant stirring. After stirring for 6 h, the solvent wasremoved under reduced pressure and the residue obtained wasfurther washed with petroleum ether to give 4 as white solid product.Yield

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Article; Bhat, Sajad A.; Mague, Joel T.; Balakrishna, Maravanji S.; Inorganica Chimica Acta; vol. 443; (2016); p. 243 – 250;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some scientific research about Copper(II) trifluoromethanesulfonate

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

General procedure: Representative procedure for 17: A Schlenk tube was charged with 2 (400mg, 2.03mmol), dry THF (10mL), anhydrous cobalt(II) chloride and a stirring bar. In a separate Schlenk tube, a solution of lithium diisopropylamide (LDA) was prepared in THF (25mL) from diisopropylamine (700muL, 5.0 mmol) and n-butyl lithium (3.15mL of a 1.6M solution in hexane, 5.0 mmol). The LDA-solution was added under protection from air to the solution of 2 and CoCl2. After the mixture has been stirred overnight, all volatile materials were removed on a vacuum line. The Schlenk vessel was transferred into the glove-box and the dark colored solid residue was dissolved in a small volume of dry dichloromethane. Layering the solution with dry n-hexane afforded brown single crystals of the product., 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Graser, Markus; Kopacka, Holger; Wurst, Klaus; Mueller, Thomas; Bildstein, Benno; Inorganica Chimica Acta; vol. 401; (2013); p. 38 – 49;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

As the rapid development of chemical substances, we look forward to future research findings about 14172-91-9

5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), cas is 14172-91-9, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,14172-91-9

(a) N-Bromosuccinimide (0.105 g, 0.592 mmol) was added with stirring to a solution of 0.02 g (0.0296 mmol) of complex 5 in a mixture of 10 mL of chloroform and 1 mL of DMF, the mixture was stirred at ambient temperature for 8 h. The reaction mixture was concentrated to minimal volume, 10 mL of DMF, water, and solid NaCl were added, the precipitate was separated by filtration, washed with water, acetonitrile, dried, chromatographed on aluminum oxide using chloroform as an eluent, and reprecipitated from ethanol. Yield 0.026 g (0.0199 mmol), 68%. MS (m/z (Irel, %)): 1306.6 (98) [M]+; for C44H20N4Br8Cu calcd.: 1307.5. IR (nu, cm-1): 2925 s, 2853 m nu(C-H, Ph), 1680 w, 1488 m nu(C=C, Ph), 1467 w, 1444 w nu(C=N), 1366 w, 1351 w nu(C-N), 1175 m, 1145 w, 1108 w delta(C-H, Ph), 1024 s nu(C-C), 924 m, 858 m gamma(C-H, pyrrole ring), 756 m, 734 m, 695 m gamma(C-H, Ph). For C44H20N4Br8Cu anal. calcd. (%): C, 40.42; N, 4.29; H, 1.54; Br, 48.89. Found (%): C, 40.15; N, 4.16; H, 1.59; Br, 48.71.

As the rapid development of chemical substances, we look forward to future research findings about 14172-91-9

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”