Synthetic Route of 1111-67-7, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1111-67-7, Cuprous thiocyanate, introducing its new discovery.
Synthesis, spectral and crystal structures of two new copper(I) complexes of di-2-pyridyl ketone (DPK) containing uncoordinated N-protonated ligand; [(DPK)H][CuX2] (X = I and NCS)
Two new copper(I) complexes of di-2-pyridyl ketone (DPK); [(DPK)H][CuI2] (1) and [(DPK)H][(Cu{NCS)2] (2) have been prepared and characterized by spectroscopic and crystallographic methods. Both complexes are colored and exhibit very broad and strong MLCT bands in the visible region. The IR spectra of these complexes are measured and discussed. The structure determination of complex 1 shows that it consists of discrete [(DPK)H]+ cation contains N-H¡¤¡¤¡¤N hydrogen bonds, and polymeric [CuI2]- anion. In the anion, each copper atom is in a distorted tetrahedral environment with Cu-I bond lengths from 2.570(4) to 3.072(4) A?. The structure of complex 2, which is similar to 1, features uncoordinated N-protonated di-2-pyridyl ketone cations and corrugated layers of [Cu(NCS)2](n), in which the copper atom is in a distorted tetrahedral CuS2N2 chromophore; Cu-N bond lengths are 1.954(2) and 1.958(2) A?, and Cu-S distances are 2.4120(8) and 2.4501(7) A?. (C) 2000 Elsevier Science Ltd.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”