Application of 1111-67-7, In homogeneous catalysis, catalysts are in the same phase as the reactants. Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products.In an article,authors is Davidson, Ross J., once mentioned the application of Application of 1111-67-7, Name is Cuprous thiocyanate, is a conventional compound.
Tris(2-cyanoethyl)phosphine (tcep) reacts with the copper(I) compounds, CuX (X = Cl, Br, I and SCN), in a 1:1 ratio to give 1:1 complexes, CuX(tcep), whereas it reacts with CuY (Y = PF6, ClO4, NO3, BH4, CN and CF3COO) in a 2:1 ratio to give the 2:1 complexes, CuY(tcep)2. Single crystal X-ray structures show that for the anions X = Br and SCN, the complexes are coordination polymers, [CuX(tcep)]n, with the Cu centres being bridged by the anion, and as well, one nitrile arm per tcep ligand coordinates intermolecularly to the Cu to give tetrahedral ‘PBr2N’ and ‘PSN2’ coordination spheres respectively. The 2:1 compounds exhibit a variety of structures. For Y = ClO4, CN and CF3COO polymeric structures are formed except for Y = BH4 where the compound is a discrete monomer, [Cu(BH 4)(tcep)2], with a chelating anion and two monodentate P-bound tcep ligands. Both the compounds obtained with Y = CN and CF 3COO also contain coordinated anions and are formulated as [Cu(CN)(tcep)2]n and [Cu(CF3COO)(tcep) 2]n respectively. In the case of Y = CN the anion is bridging and the tcep ligands are only P-bound giving a ‘P2NC’ coordination sphere. In contrast, for Y = CF3COO, the anion is an O-bound monodentate and the tcep ligands bridge to give a ‘P2NO’ environment for the copper. In the case of Y = ClO4, the anion is not coordinated but a polymeric structure, [Cu(tcep)2] n(ClO4)n, is formed via bridging tcep ligands linking Cu centres intermolecularly resulting in a ‘P2N2’ coordination sphere.
We’ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 1111-67-7, and how the biochemistry of the body works.Application of 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”