Chemical engineers work across a number of sectors, processes differ within each of these areas, but chemistry and chemical engineering roles are found throughout, creation and manufacturing process of chemical products and materials. Recommanded Product: 1111-67-7, Name is Cuprous thiocyanate, Recommanded Product: 1111-67-7, molecular formula is CCuNS. In a article,once mentioned of Recommanded Product: 1111-67-7
Two new dinuclear mu-CO32- Cu(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO2 and also directly prepared from the carbonate salt. The compounds comprise: [Cu2(mu-CO3)(dpyam)4](ClO4) 2(H2O)4 (1), and [Cu2(mu-CO3)2(dpyam)2](H 2O) (2), (in which dpyam = di-2-pyridylamine). For 1, the carbonate ligand acts as a bridge between two Cu(II) centres showing an anti-anti (mu-eta1-eta1-CO32-) coordination mode with a distorted square-based pyramidal geometry for each Cu(II) environment. Complex 2 involves the di-mu-CO32- bridge with a novel tridentate mu-eta1-eta2-CO32- coordination mode. The geometry around each copper atom is distorted square-based pyramidal. Susceptibility measurements for both complexes show a weak to moderately strong antiferromagnetic coupling with J values of -90.4 and -9.9 cm-1 for 1 and 2, respectively. The tridentate co-ordination mode of the carbonate bridge in 2 has not previously been reported for dinuclear Cu(II) complexes. Also its magnetic behaviour and superexchange pathway are discussed.
Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about Safety of Bis(dibenzylideneacetone)palladium!, Recommanded Product: 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”