Application of 14898-67-0

From this literature《Lean NOx reduction by CO at low temperature over bimetallic IrRu/Al2O3 catalysts with different Ir : Ru ratios》,we know some information about this compound(14898-67-0)Application of 14898-67-0, but this is not all information, there are many literatures related to this compound(14898-67-0).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Lean NOx reduction by CO at low temperature over bimetallic IrRu/Al2O3 catalysts with different Ir : Ru ratios, published in 2020, which mentions a compound: 14898-67-0, mainly applied to lean exhaust gas nitrogen oxide catalytic reduction carbon monoxide; alumina supported iridium ruthenium bimetallic reduction catalyst; low temperature reduction exhaust gas nitrogen oxide carbon monoxide, Application of 14898-67-0.

IrRu/Al2O3 bimetallic catalysts with various Ir:Ru ratios were prepared for the reduction of exhaust gas NO by CO under lean conditions. catalyst activity and physicochem. properties of IrRu/Al2O3 catalysts caused by introducing Ru on Ir in different amounts was assessed. bi-metallic IrRu catalysts were prepared by co-impregnation of Ir and Ru on the Al2O3 support, where the total combined amount of IR and Ru was kept constant IrRu bi-metallic catalysts were characterized by x-ray diffraction (XRD), H2 temperature-programmed reduction, CO chemisorption, H2 temperature-programmed desorption, transmission electron microscopy, EDS-mapping, and XPS analyses. activity results indicated IrRu bi-metallic catalysts drastically enhanced de-NOx activity in a low-temperature region; monometallic Ir and Ru catalysts exhibited diminished or even zero NOx reduction activity. a detailed examination of XRD patterns and SEM/energy dipersive x-ray mapping analyses implied formation of an IrRu alloy following reduction thus, the synergetic effect between Ir and Ru was expected to originate from the intrinsic characteristics of the IrRu alloy phase vs. Ir and Ru acting sep. as independent dual active sites. utilization of bi-metallic IrRu catalysts for NOx reduction by CO (reductant) under lean conditions was expected to enable highly efficient NOx reduction at low temperature without needing urea-based reductants, even under oxidative conditions.

From this literature《Lean NOx reduction by CO at low temperature over bimetallic IrRu/Al2O3 catalysts with different Ir : Ru ratios》,we know some information about this compound(14898-67-0)Application of 14898-67-0, but this is not all information, there are many literatures related to this compound(14898-67-0).

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”