Broiler responses to copper levels and sources: growth, tissue mineral content, antioxidant status and mRNA expression of genes involved in lipid and protein metabolism was written by da Cruz Ferreira, Helvio Junior;da Silva, Diego Ladeira;de Carvalho, Bruno Reis;de Oliveira, Haniel Cedraz;Cunha Lima Muniz, Jorge;Alves, Warley Junior;Eugene Pettigrew, James;Eliza Facione Guimaraes, Simone;da Silva Viana, Gabriel;Hannas, Melissa Izabel. And the article was included in BMC Veterinary Research in 2022.SDS of cas: 20427-59-2 This article mentions the following:
Five hundred 8-d old male broilers Cobb500 were randomly allotted into 10 treatments in factorial arrangement with 5 Cu levels (0, 4, 8, 12, and 16 mg/kg), and 2 sources (Cu proteinate, CuPro and Cu sulfate, CuSO4.5H2O) for a 10-d-experiment Feed conversion ratio (FCR) was better (P < 0.05) in CuPro fed chicks compared with CuSO4.5H2O group. Average daily feed intake (ADFI) decreased linearly (P < 0.05) as dietary Cu increased. A quadratic response (P < 0.05) to Cu levels was found for FCR, being optimized at 9.87 and 8.84 mg Cu/kg in CuPro and CuSO4.5H2O diets, resp. Copper supplementation linearly increased liver Cu content (P < 0.05) and tended to linearly increase (P = 0.07) phosphorus (P) and copper in tibia. Manganese and zinc were higher (P < 0.05) in tibia of CuPro fed birds. Broilers fed CuPro exhibited lower liver iron (P < 0.05) content, lower activities of Cu, Zn superoxide dismutase (CuZnSOD) in breast muscle and liver, and glutathione peroxidase in liver. Glutathione peroxidase reduced linearly (P < 0.05) with CuPro levels and increased linearly (P < 0.05) with CuSO4.5H2O levels and were lower (P < 0.05) in all CuPro levels in breast muscle. Breast muscle malondialdehyde concentration tended to be higher (P = 0.08) in broilers fed CuSO4.5H2O. Copper levels linearly increased (P < 0.05) metallothionein (MT) and malate dehydrogenase (MDH) expression in liver, and six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) in the intestine. Copper elicited a quadratic response (P < 0.050) in AKT-1 and mammalian target of rapamycin (mTOR) in breast muscle, CuZnSOD in liver and antioxidant 1 copper chaperone (ATOX 1) in intestine. Broilers fed CuPro exhibited higher mRNA expression of mTOR in muscle breast and lower CuZnSOD in liver and ATOX 1 in intestine. Interaction (P < 0.05) between levels and sources was found in mRNA expression for GSK-3β, MT, and CuZnSOD in breast muscle, FAS and LPL in liver and MT and CTR1 in intestine. CuPro showed beneficial effects on feed conversion and bone mineralization. Organic and inorganic Cu requirements are 9.87 and 8.84 mg Cu/kg, resp. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2SDS of cas: 20427-59-2).
Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The evolution of transition metal catalysts has attained a stage of civilization that authorizes for an extensive scope of chemical bonds formation partners to be combined efficiently. Copper nanoparticles can also catalyze the coupling reaction of nitrogen-containing nucleophiles, phenols, thiols, xanthogenates, selenium ruthenium nucleophiles and the like.SDS of cas: 20427-59-2
Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”