A new application about Cuprous thiocyanate

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1111-67-7

Related Products of 1111-67-7, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1111-67-7, Cuprous thiocyanate, introducing its new discovery.

Assembly of novel 2D and 3D heterometallic SbIII-CuI polymers based on antimony(III) thiolates as metallothiolato ligands

A new type of neutral heterometallic SbIII-CuI thiolate coordination polymer has been synthesized under solvothermal conditions by using antimony(III) thiolates as metalloligands and CuSCN as the source of the second metal ion. Reaction of [Sb(edt)Cl] (1) (edt = ethane-1,2-dithiolate) with 1 equivalent of CuSCN affords [{Sb2(edt) 2(mu3-S)CuCl(CuSCN)}n] (2), which features a 2D layer consisted of -CuSCNCuSCN-chains and {Sb2(edt) 2(mu3-S)CuCl} units. During the reaction, 1 was converted into a sulfur-bridged dimer Sb(edt)2S, which behaves simultaneously as a bridging and chelating ligand through all of its sulfur atoms to connect four Cu+ ions in the framework structure of 2. Replacement of Cl- in 1 with pymt-gives a new antimony(III) thiolate formulated as [Sb(edt)-(pymt)] (3) (pymt = 2-pyrimidinethiol), which was further treated with CuSCN to afford coordination polymers [{[Sb(edt)(pymt)] 2(CuSCN)3}n] (4) and [{[Sb(edt)(pymt)]-(CuSCN) 2}n] (5). In the assemblies of 4 and 5, the structure of 3 remains intact and the whole compound serves as a multidentate ligand through Sedt and Npymt atoms to Cu+ ions. Complex 4 also contains -CuSCNCuSCN- chains, which are linked by tridentate {Sb(edt)(pymt)} fragments to form a 2D polymer. Complex 5 is a 3D architecture with {Sb(edt)(pymt)} units acting as bidentate bridging ligand to link the (CuSCN)n layers and {(CuSCN)2}n columns. Complexes 2-5 showed optical transitions with band gaps of 2.66 to 3.41 eV, and their optical properties were studied by DFT calculations. Wiley-VCH Verlag GmbH & Co. KGaA, 2009.

Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”