Related Products of 1111-67-7, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 1111-67-7, Cuprous thiocyanate, introducing its new discovery.
Assembly of novel 2D and 3D heterometallic SbIII-CuI polymers based on antimony(III) thiolates as metallothiolato ligands
A new type of neutral heterometallic SbIII-CuI thiolate coordination polymer has been synthesized under solvothermal conditions by using antimony(III) thiolates as metalloligands and CuSCN as the source of the second metal ion. Reaction of [Sb(edt)Cl] (1) (edt = ethane-1,2-dithiolate) with 1 equivalent of CuSCN affords [{Sb2(edt) 2(mu3-S)CuCl(CuSCN)}n] (2), which features a 2D layer consisted of -CuSCNCuSCN-chains and {Sb2(edt) 2(mu3-S)CuCl} units. During the reaction, 1 was converted into a sulfur-bridged dimer Sb(edt)2S, which behaves simultaneously as a bridging and chelating ligand through all of its sulfur atoms to connect four Cu+ ions in the framework structure of 2. Replacement of Cl- in 1 with pymt-gives a new antimony(III) thiolate formulated as [Sb(edt)-(pymt)] (3) (pymt = 2-pyrimidinethiol), which was further treated with CuSCN to afford coordination polymers [{[Sb(edt)(pymt)] 2(CuSCN)3}n] (4) and [{[Sb(edt)(pymt)]-(CuSCN) 2}n] (5). In the assemblies of 4 and 5, the structure of 3 remains intact and the whole compound serves as a multidentate ligand through Sedt and Npymt atoms to Cu+ ions. Complex 4 also contains -CuSCNCuSCN- chains, which are linked by tridentate {Sb(edt)(pymt)} fragments to form a 2D polymer. Complex 5 is a 3D architecture with {Sb(edt)(pymt)} units acting as bidentate bridging ligand to link the (CuSCN)n layers and {(CuSCN)2}n columns. Complexes 2-5 showed optical transitions with band gaps of 2.66 to 3.41 eV, and their optical properties were studied by DFT calculations. Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”