A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3. In an article, author is Mathew, Sobin,once mentioned of 14347-78-5, Safety of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.
Hybrid Catalytic-Protective Structure of CuInS2 and B-N Doped Carbon as a Highly Efficient and Ultra-Stable Electrocatalyst for Oxygen Evolution Reaction
The stagnant chemistry of oxygen evolution reaction (OER) requires intensive studies on the advanced OER catalysts for highly efficient and ultra-stable hydrogen production via water splitting. Herein, we designed and fabricated a unique hybrid structure comprising a protective layer of B-N co-doped carbon (BNC) coated on copper indium disulfide (CIS) on three-dimensional (3D) macroporous nickel foam (NF) by a two-step solvothermal process. The CIS-BNC/NF electrocatalyst demonstrated a promising electrocatalytic behavior for achieving a current density of 20 mA cm(-2) at an overpotential of 230 mV, whereas ruthenium on carbon (Ru/C) required 310 mV to attain the same current density. The excellent OER activity results from the synergetic effect of the high electrocatalytic activities of CIS (CuInS2) and the large surface area caused by the BNC. In addition, the hybrid structure of CIS-BNC/NF showed a 0.5% increase in potential after prolonged chronopotentiometry measurements (CP) for 110 h. The protection layer of the BNC not only provided a vast and readily accessible pathway for fast ion transportation but also acted as a shield for CIS from direct contact with the alkaline electrolyte. This study provides a breakthrough on hybrid carbon-transition metal structures as economic and ultra-stable electrocatalysts for hydrogen production.
Interested yet? Keep reading other articles of 14347-78-5, you can contact me at any time and look forward to more communication. Safety of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”