Related Products of 1111-67-7, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a Article£¬once mentioned of 1111-67-7
Synthesis, spectral studies of cobalt(II) tetrathiocyanoto dicuperate(I) complexes with some acylhydrazones and their antimicrobial activity
Cobalt(II) complexes of the type Co[Cu(NCS)2]2 ? L, where L is acetophenonebenzoylhydrazone (Abh), acetophenoneisonicotinoylhydrazone (Ainh), acetophenonesalicyloylhydrazone (Ash), acetophenoneanthraniloylhydrazone (Aah), p- hydroxyacetophenonebenzoylhydrazone (Phabh), p- hydroxyacetophenoneisonicotinoylhydrazone (Phainh), p- hydroxyacetophenonesalicyloylhydrazone (Phash), and p- hydroxyacetophenoneanthraniloylhydrazone (Phaah) were synthesized and characterized by elemental analyses, molar conductance, magnetic moments, electronic and IR spectra, and X-ray diffraction studies. The complexes are insoluble in common organic solvents and are non-electrolytes. These complexes are coordinated through the >C=O and >C=N groups of the hydrazone ligands. The magnetic moments and electronic spectra suggest a spin-free octahedral geometry around Co(II). The X-ray diffraction parameters (a, b, c) for Co[Cu(SCN)2]2 ? Ainh and Co[Cu(SCN)2] 2 ? Phabh correspond to orthorhombic and tetragonal crystal lattices, respectively. The complexes show a fair antifungal and antibacterial activity against a number of fungi and bacteria. The activity increases with increasing concentration of the compounds.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Related Products of 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”