With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7758-89-6,Cuprouschloride,as a common compound, the synthetic route is as follows.
EXAMPLE 1 N2-(4-Bromophenyl)-5-trifluoromethyl-1,3-benzoxazol-2-amine 4-Bromophenyl isothiocyanate (1.667 g, 7.785 mmol) was added to a solution of 2-amino-4-trifluoromethylphenol (1.379 g, 7.785 mmol) in tetrahydrofuran (THF) (100 mL) and the reaction was stirred at room temperature for about 16 hours then at about 50 C. for about another 5 hours. Copper (I) chloride (0.771 g, 7.785 mmol) and triethylamine (1.08 mL, 7.785 mmol) were added, and the mixture was stirred at room temperature for about 72 hours and then at about 50 C. for about another 18 hours. Additional copper (I) chloride (0.385 g) was added and the reaction was stirred at about 60 C. for about another 2 hours. The reaction was concentrated under reduced pressure, dissolved in methanol (200 mL), filtered through a pad of diatomaceous earth and the solvent removed in vacuo to afford N2-(4-bromophenyl)-5-trifluoromethyl-1,3-benzoxazol-2-amine as a brown solid (3.90 g, 140% of theory); RP-HPLC Rt 17.627 min, 77% purity (5% to 85% acetonitrile/0.1 M aqueous ammonium acetate, buffered to pH 4.5, over 20 min at 1 mL/min; lambda=254 nm; Waters Deltapak C18, 300 A, 5 mum, 150*3.9 mm column); and m/z 354.9 and 356.9 (M-H)-.
7758-89-6 Cuprouschloride 62652, acopper-catalyst compound, is more and more widely used in various.
Reference£º
Patent; Wishart, Neil; Ritter, Kurt; US2003/9034; (2003); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”