Chemistry is traditionally divided into organic and inorganic chemistry. Quality Control of Cuprous thiocyanate, The former is the study of compounds containing at least one carbon-hydrogen bonds.In a patent£¬Which mentioned a new discovery about 1111-67-7
Transformation from Cu2-xS Nanodisks to Cu2-xS@CuInS2 Heteronanodisks via Cation Exchange
Cationic-exchange methods allow for the fabrication of metastable phases or shapes, which are impossible to obtain with conventional synthetic colloidal methods. Here, we present the systematic fabrication of heteronanostructured (HNS) Cu2-xS@CuInS2 nanodisks via a cationic-exchange reaction between Cu and In atoms. The indium-trioctylphosphine complex favorably attacks the lateral (16 0 0) plane of the roxbyite Cu2-xS hexagon. We explain the phenomena by estimating the formation energy of vacancies and the heat of reaction required to exchange three Cu atoms with an In atom via density functional theory calculations. In an experiment, a decrease in the amount of trioctylphosphine surfactant slows the reaction rate and allows for the formation of a lateral heterojunction structure of nanoplatelets. We analyze the exact structures of these materials using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. Moreover, we demonstrate that our heteronanodisk can be an intermediate for different HNS materials; for example, adding gold precursors to a Cu2-xS@CuInS2 nanodisk results in a AuS@CuInS2 nanodisk via an additional cationic reaction between Cu ions and Au ions.
If you are interested in 1111-67-7, you can contact me at any time and look forward to more communication. Quality Control of Cuprous thiocyanate
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”