Share a compound : Bis(acetylacetone)copper

The chemical industry reduces the impact on the environment during synthesis,13395-16-9,Bis(acetylacetone)copper,I believe this compound will play a more active role in future production and life.

13395-16-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Bis(acetylacetone)copper, cas is 13395-16-9,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: In a typical synthesis of Cu40Ag60, 0.45mmol Cu(acac)2 and 0.35 Ag (ac) was mixed with 3mL of OAm, 1 mL of OAc and 11mL of ODE. All synthesis was conducted in a four-necked glass reactor allowing the precise temperature control and inert gas atmosphere under dark conditions. Firstly, the mixture was heated to 60C and kept at this temperature for 10min. Then, the mixture was heated to 180C and kept at this temperature for 30min before it was cooled down to room temperature. After cooling, the resultant reaction mixture was collected with hexane (2mL) and the NPs were separated by centrifugation (8500rpm, 12min) after adding isopropanol (40mL). To further purify the yielded CuAg NPs, the product was centrifuged (8500rpm, 12min) one more time with ethanol (40mL). Finally, the remaining product was dispersed in hexane (10mL) for further use. By using the same recipe and varying metal precursor amounts, two different compositions of CuAg NPs were synthesized. Reductive mixing of 0.3mmol Cu(acac)2 and 0.5 Ag(ac) resulted in Cu30Ag70 NPs and mixing 0.6mmol Cu(acac)2 with 0.4 Ag (ac) led to Cu60Ag40. Synthesis of Ag NPs was conducted with the same recipe without using Cu precursor.

The chemical industry reduces the impact on the environment during synthesis,13395-16-9,Bis(acetylacetone)copper,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Balkan, Timucin; Kuecuekkececi, Hueseyin; Kaya, Sarp; Metin, Oender; Zarenezhad, Hamaneh; Journal of Alloys and Compounds; vol. 831; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Synthetic route of Bis(acetylacetone)copper

As the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

A common heterocyclic compound, the copper-catalyst compound, name is Bis(acetylacetone)copper,cas is 13395-16-9, mainly used in chemical industry, its synthesis route is as follows.

13395-16-9, General procedure: CZTS nanoparticles were synthesized at different temperatures(220-320 C) for 3 hours and for variousreaction times (2-5 hours) at 240 C, usinghigh-temperature arrested precipitation in the coordinatingsolvent, oleylamine (OLA).15 Under the reactiontime of 3 hours, the reactants for synthesis ofCZTS nanoparticles didn?t dissolve enough in OLA.

As the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Reference£º
Article; Kim, Donguk; Kim, Minha; Shim, Joongpyo; Kim, Doyoung; Choi, Wonseok; Park, Yong Seob; Choi, Youngkwan; Lee, Jaehyeong; Journal of Nanoscience and Nanotechnology; vol. 16; 5; (2016); p. 5082 – 5086;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

13395-16-9, 13395-16-9 Bis(acetylacetone)copper 2723615, acopper-catalyst compound, is more and more widely used in various fields.

13395-16-9, Bis(acetylacetone)copper is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The monodisperse CuPd alloy NPs with composition controlwere synthesized by using a modified version of our estab-lished recipe for the CoPd alloy NPs [14]. In a typical synthesis of Cu75Pd25NPs, copper(II) acetylacetonate (0.35 mmol, 90 mg)and palladium(II) acetylacetonate (0.1 mmol, 31 mg) were dis-solved in 3 mL of OAm in a 10 mL of glass vial. In a four-necked glass reactor that allows to study under inert atmosphere,200 mg of MB was dissolved in 3 mL of OAm and 7 mL of 1-octadecene at 80C under magnetic stirring. Next, the metal precursor mixture was quickly injected into the reactor under argon environment. The reaction was then proceed for 1 h before cooled down to room temperature. Then, the colloidal NPs mixture was transferred into two separate centrifuge tubeand acetone/ethanol (v/v = 7/3) was added into the tubes. TheNP product was separated by centrifugation at 8500 rpm for10 min.

13395-16-9, 13395-16-9 Bis(acetylacetone)copper 2723615, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Guengoermez, Kuebra; Metin, Oender; Applied Catalysis A: General; vol. 494; (2015); p. 22 – 28;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

With the complex challenges of chemical substances, we look forward to future research findings about Bis(acetylacetone)copper

Name is Bis(acetylacetone)copper, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 13395-16-9, its synthesis route is as follows.,13395-16-9

General procedure: In a typical synthesis of Cu40Ag60, 0.45mmol Cu(acac)2 and 0.35 Ag (ac) was mixed with 3mL of OAm, 1 mL of OAc and 11mL of ODE. All synthesis was conducted in a four-necked glass reactor allowing the precise temperature control and inert gas atmosphere under dark conditions. Firstly, the mixture was heated to 60C and kept at this temperature for 10min. Then, the mixture was heated to 180C and kept at this temperature for 30min before it was cooled down to room temperature. After cooling, the resultant reaction mixture was collected with hexane (2mL) and the NPs were separated by centrifugation (8500rpm, 12min) after adding isopropanol (40mL). To further purify the yielded CuAg NPs, the product was centrifuged (8500rpm, 12min) one more time with ethanol (40mL). Finally, the remaining product was dispersed in hexane (10mL) for further use. By using the same recipe and varying metal precursor amounts, two different compositions of CuAg NPs were synthesized. Reductive mixing of 0.3mmol Cu(acac)2 and 0.5 Ag(ac) resulted in Cu30Ag70 NPs and mixing 0.6mmol Cu(acac)2 with 0.4 Ag (ac) led to Cu60Ag40. Synthesis of Ag NPs was conducted with the same recipe without using Cu precursor.

With the complex challenges of chemical substances, we look forward to future research findings about Bis(acetylacetone)copper

Reference£º
Article; Balkan, Timucin; Kuecuekkececi, Hueseyin; Kaya, Sarp; Metin, Oender; Zarenezhad, Hamaneh; Journal of Alloys and Compounds; vol. 831; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

With the complex challenges of chemical substances, we look forward to future research findings about Bis(acetylacetone)copper

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Bis(acetylacetone)copper, and cas is 13395-16-9, its synthesis route is as follows.,13395-16-9

General procedure: The monodisperse CuPd alloy NPs with composition controlwere synthesized by using a modified version of our estab-lished recipe for the CoPd alloy NPs [14]. In a typical synthesis of Cu75Pd25NPs, copper(II) acetylacetonate (0.35 mmol, 90 mg)and palladium(II) acetylacetonate (0.1 mmol, 31 mg) were dis-solved in 3 mL of OAm in a 10 mL of glass vial. In a four-necked glass reactor that allows to study under inert atmosphere,200 mg of MB was dissolved in 3 mL of OAm and 7 mL of 1-octadecene at 80C under magnetic stirring. Next, the metal precursor mixture was quickly injected into the reactor under argon environment. The reaction was then proceed for 1 h before cooled down to room temperature. Then, the colloidal NPs mixture was transferred into two separate centrifuge tubeand acetone/ethanol (v/v = 7/3) was added into the tubes. TheNP product was separated by centrifugation at 8500 rpm for10 min.

With the complex challenges of chemical substances, we look forward to future research findings about Bis(acetylacetone)copper

Reference£º
Article; Guengoermez, Kuebra; Metin, Oender; Applied Catalysis A: General; vol. 494; (2015); p. 22 – 28;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Synthetic route of Bis(acetylacetone)copper

13395-16-9, The synthetic route of 13395-16-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13395-16-9,Bis(acetylacetone)copper,as a common compound, the synthetic route is as follows.

Cu(C5H7O2)2 (13.1 mg, 0.05 mmol) was solubilized in 5 mL of methanoland added to a 5 mL of methanolic solution of HL (24.0 mg,0.1 mmol). The mixture was stirred under reflux for 1 h. Dark greencrystals suitable for X-ray diffraction analysis were obtained after somedays from the mother liquor at room temperature. Yield: 22.9 mg(84.5%). Melting point: Decomposes after 260 C. Molar conductivity(1 mM, DMF): 0.35 Omega-1¡¤cm2¡¤mol-1 Elemental analysis calculated forC26H22O2N8Cu (%): C. 57.61; H. 4.09; N. 20.67. Found (%): C. 57.65; H.3.83; N. 20.64. IR bands (KBr, cm-1): nu(CeO) 1371; nu(C]N) 1580,1557; nu(NeN) 1160; rho(py) 735. ESI-MS [C26H23O2N8Cu]+ calcd./found(m/z)=542.1240, 542.1251.

13395-16-9, The synthetic route of 13395-16-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Santiago, Pedro H.O.; Santiago, Mariana B.; Martins, Carlos H.G.; Gatto, Claudia C.; Inorganica Chimica Acta; vol. 508; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

13395-16-9 Bis(acetylacetone)copper 2723615, acopper-catalyst compound, is more and more widely used in various fields.

13395-16-9, Bis(acetylacetone)copper is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A yellow solution of H4L (0.3mmol, 0.068g) in MeOH (5mL) was added to a green solution of Cu(acac)2 (0.30mmol, 0.079g) in dmf (20mL) which was stirred under heating at ~90C. The resulting dark green solution was refluxed for 3h and after cooled at r.t. was layered with Et2O. X-ray quality blue crystals of 1¡¤MeOH were formed after 3weeks. The identity of the crystals was confirmed by unit cell determination (a=b=17.414(1), c=16.751(1) A, alpha=beta=gamma=90, V=5079A3). The crystals were filtered off and dried under vacuum. (Yield: 0.056g, ?65%). The solid was analyzed as solvent free. C44H52Cu4N4O16 requires: C, 46.07; H, 4.57; N, 4.88. Found: C, 45.88; H, 4.54; N, 4.85%. FT-IR (KBr pellets, cm-1): 3413(br,s), 2912(w), 2873(w), 2828(w), 1625(vs), 1603(s), 1543(s), 1473(s), 1448(s), 1399(m), 1385(m), 1338(m), 1300(vs), 1254(m), 1206(m), 1160(m), 1129(m), 1083(m), 1029(s), 980(w), 936(w), 915(m), 875(m), 770(s), 683(s), 633(m), 586(m), 489(m), 454(m)., 13395-16-9

13395-16-9 Bis(acetylacetone)copper 2723615, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Lazarou, Katerina N.; Savvidou, Aikaterini; Raptopoulou, Catherine P.; Psycharis, Vassilis; Polyhedron; vol. 152; (2018); p. 125 – 137;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

13395-16-9, As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

13395-16-9, Bis(acetylacetone)copper is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a typical synthesis of Cu40Ag60, 0.45mmol Cu(acac)2 and 0.35 Ag (ac) was mixed with 3mL of OAm, 1 mL of OAc and 11mL of ODE. All synthesis was conducted in a four-necked glass reactor allowing the precise temperature control and inert gas atmosphere under dark conditions. Firstly, the mixture was heated to 60C and kept at this temperature for 10min. Then, the mixture was heated to 180C and kept at this temperature for 30min before it was cooled down to room temperature. After cooling, the resultant reaction mixture was collected with hexane (2mL) and the NPs were separated by centrifugation (8500rpm, 12min) after adding isopropanol (40mL). To further purify the yielded CuAg NPs, the product was centrifuged (8500rpm, 12min) one more time with ethanol (40mL). Finally, the remaining product was dispersed in hexane (10mL) for further use. By using the same recipe and varying metal precursor amounts, two different compositions of CuAg NPs were synthesized. Reductive mixing of 0.3mmol Cu(acac)2 and 0.5 Ag(ac) resulted in Cu30Ag70 NPs and mixing 0.6mmol Cu(acac)2 with 0.4 Ag (ac) led to Cu60Ag40. Synthesis of Ag NPs was conducted with the same recipe without using Cu precursor.

13395-16-9, As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

Reference£º
Article; Balkan, Timucin; Kuecuekkececi, Hueseyin; Kaya, Sarp; Metin, Oender; Zarenezhad, Hamaneh; Journal of Alloys and Compounds; vol. 831; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

With the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Bis(acetylacetone)copper, cas is 13395-16-9, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

A yellow solution of H4L (0.30mmol, 0.068g) in dmf (6mL) was added to a turquoise solution of Cu(acac)2 (0.30mmol, 0.079g) in dmf (20mL). The immediately formed green solution was refluxed for 3h and left for slow evaporation. X-ray quality blue crystals of 3¡¤1.5dmf were formed after 2months, which were filtered off and dried under vacuum. (Yield: 0.053g, ?60%). The solid was analyzed as solvent free. C44H56Cu4N4O18 requires: C, 44.67; H, 4.77; N, 4.73%. Found: C, 44.49; H, 4.74; N, 4.70. FT-IR (KBr pellets, cm-1): 3553(s), 3477(s), 3414(s), 1638(s), 1617(vs), 1578(s), 1553(s), 1533(s), 1462(w), 1413(m), 1384(m), 1355(s), 1275(s), 1189(s), 1020(s), 937(s), 782(s), 684(m), 653(w), 613(s), 480(m), 455(s)., 13395-16-9

With the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Reference£º
Article; Lazarou, Katerina N.; Savvidou, Aikaterini; Raptopoulou, Catherine P.; Psycharis, Vassilis; Polyhedron; vol. 152; (2018); p. 125 – 137;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Synthetic route of Bis(acetylacetone)copper

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13395-16-9,Bis(acetylacetone)copper,as a common compound, the synthetic route is as follows.

A yellow solution of H4L (0.30mmol, 0.068g) in dmf (6mL) was added to a turquoise solution of Cu(acac)2 (0.30mmol, 0.079g) in dmf (20mL). The immediately formed green solution was refluxed for 3h and left for slow evaporation. X-ray quality blue crystals of 3¡¤1.5dmf were formed after 2months, which were filtered off and dried under vacuum. (Yield: 0.053g, ?60%). The solid was analyzed as solvent free. C44H56Cu4N4O18 requires: C, 44.67; H, 4.77; N, 4.73%. Found: C, 44.49; H, 4.74; N, 4.70. FT-IR (KBr pellets, cm-1): 3553(s), 3477(s), 3414(s), 1638(s), 1617(vs), 1578(s), 1553(s), 1533(s), 1462(w), 1413(m), 1384(m), 1355(s), 1275(s), 1189(s), 1020(s), 937(s), 782(s), 684(m), 653(w), 613(s), 480(m), 455(s)., 13395-16-9

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

Reference£º
Article; Lazarou, Katerina N.; Savvidou, Aikaterini; Raptopoulou, Catherine P.; Psycharis, Vassilis; Polyhedron; vol. 152; (2018); p. 125 – 137;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”