Application of 7787-70-4

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

A common heterocyclic compound, the copper-catalyst compound, name is Copper(I) bromide,cas is 7787-70-4, mainly used in chemical industry, its synthesis route is as follows.,7787-70-4

General procedure: The complexes were typically obtained from the reaction of the copper halide (CuX) with the appropriate camphor ligand in THF (3 mL) upon stirring for ca. 18 h at room temperature. Filtration of the precipitate, washing with n-pentane (ca. 6mL) and drying under vacuum affords the Cu(I) complex.

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Fernandes, Tiago A.; Mendes, Filipa; Roseiro, Alexandra P.S.; Santos, Isabel; Carvalho, M. Fernanda N.N.; Polyhedron; vol. 87; (2015); p. 215 – 219;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

CuBr (0.2 g, 1.39 mmol) wasdissolved in a mixture of dichloromethane (30 ml) and acetonitrile (30 ml) and then 2-benzylpyridine (0.23 g, 1.39 mmol)dissolved in dichloromethane (20 ml) was added. The mixture was stirred for 2 h at room temperature and allowed to standovernight. The next day the colour of the solution was green indicating the oxidation of Cu(I) to Cu(II) and the green solidwas filtered off and recrystallized from methanol. Yield (70%).

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Aguirrechu-Comeron; Pasan; Gonzalez-Platas; Ferrando-Soria; Hernandez-Molina; Journal of Structural Chemistry; vol. 56; 8; (2015); p. 1563 – 1571; Zh. Strukt. Kim.; vol. 56; 8; (2015); p. 1624 – 1632;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Name is Copper(I) bromide, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 7787-70-4, its synthesis route is as follows.,7787-70-4

A dichloromethane (2mL) solution of macrocycle 1 (12mg, 0.05mmol) was allowed to diffuse slowly through a solution of copper bromide (7.2mg, 0.05mmol) in acetonitrile (2mL) at-60C. Slow evaporation of the orange solution at room temperature afforded compound 5, in a quantitative yield, as colorless crystals suitable for an X-ray diffraction analysis. 1H NMR (CDCl3, 300MHz): delta 5.30-5.20 (m, 2H, =CH2), 4.60-2.20 (m, 16H, CH2). BrC10CuH18O2S2 (377.83): calcd C 31.79, H, 4.80; found: C 31.49, H, 4.52.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Carel, Guillaume; Madec, David; Saponar, Alina; Saffon, Nathalie; Nemes, Gabriela; Rima, Ghassoub; Castel, Annie; Journal of Organometallic Chemistry; vol. 755; (2014); p. 72 – 77;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 7787-70-4

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Name is Copper(I) bromide, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 7787-70-4, its synthesis route is as follows.,7787-70-4

0.25 mmol (0.066 g) PPh3 was added to 15 ml CH3CN solution ofcopper(I) bromide (0.036 g, 0.25 mmol) and stirred for 1 h. Acolourless precipitate formed to which the ligand L1 (0.067 g,0.25 mmol) and CHCl3 (10 ml) were added. The mixture was stirredfor 1 h. at room temperature. Orange coloured compoundappeared. It was filtered and dried in air. Single crystals wereobtained by slow diffusion of hexane to the dilute solution of thecompound in chloroform. Yield: 0.105 g (78%). FT-IR (KBr pellet,cm1): 3059(w), 2914(w), 2853(w), 2176 (vw), 2031(w),1603(m),1474(m), 1426(m), 1305(w), 1244(w), 1184(w), 1075(m), 1027(m), 970(w), 797(w), 748(s), 688(vs), 506(s), 483(s), 421(w). Anal.found (calc. for [CuI2(Br)2(L1)(PPh3)2]): C, 57.94 (58.01%); H, 4.49(4.50%); N, 5.19 (5.17%), Cu, 11.79 (11.72%).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Patra, Goutam K.; Pal, Pankaj K.; Mondal, Jahangir; Ghorai, Anupam; Mukherjee, Anindita; Saha, Rajat; Fun, Hoong-Kun; Inorganica Chimica Acta; vol. 447; (2016); p. 77 – 86;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.,7787-70-4

Synthesis of [(SIMes)CuBr]. In an oven-dried vial, copper(I) bromide (0.522 g, 3.63 mmol), SIMes.HCl (0.86 g, 2.52 mmol) and sodium tert-butoxide (0.243 g, 2.52 mmol) were loaded inside a glovebox and stirred in dry THF (18 mL) overnight at room temperature outside of the glovebox. After filtration of the reaction mixture through a plug of Celite, the filtrate was mixed with hexane to form a precipitate. A second filtration afforded 0.808 g (71% yield) of the title complex as an off-white solid.Spectroscopic and analytical data for [(SIMes)CuBr]: 1H NMR (300 MHz, [D6]acetone): delta=7.01 (s, 4H, HAr), 4.16 (s, 4H, NCH2), 2.37 (s, 12H, ArCH3), 2.29 (s, 6H, ArCH3); 13C NMR (75 MHz, CDCl3): delta=202.6 (C, NCN), 138.5 (C, CAr), 135.3 (CH, CAr), 135.0 (C, CAr), 129.7 (CH, CAr), 51.0 (CH2, NCH2), 21.0 (CH3, ArCH3), 18.0 (CH3, ArCH3); Elemental analysis calcd for C21H26BrCuN2 (449.89): C, 56.06; H, 5.83; N, 6.23. Found: C, 55.98; H, 5.64; N, 6.21%.

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Reference£º
Patent; Institut Catala d’Investigacio Quimica; Institucio Catalana de Recerca i Estudis Avancats; US2009/69569; (2009); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, a. 2-(carboxy-5-nitro-phenyl)malonic acid dimethyl ester (2) A solution of 2-chloro-4-nitrobenzoic acid (75 g, 372 mmol) in dimethyl malonate (900 mL) was sparged with nitrogen for 15 min. Sodium methoxide (48.3 g, 894 mmol) was added in one portion and the contents exothermed to 480 C. Fifteen minutes later, copper (I) bromide (5.4 g, 37 mmol) was added in one portion and the contents heated to 70 C. for 24 hrs. The reaction was 70% complete by nmr, the contents heated to 85 C. for 6 hrs to completely consume the 2-chloro-4-nitrobenzoic. Water (900 mL) was added to the cooled reaction followed by hexanes (900 mL). The aqueous layer was separated, toluene (900 mL) added, filtered through celite, and aqueous layer separated. Fresh toluene (1800 mL) was added to the aqueous layer and the biphasic mixture acidified with 6N aqueous HCl (90 mL). A white precipitate formed and the contents stirred for 18 hrs. The product was filtered off and dried to give a white soid (78.1 g, 70%) mp=153 C. 1 H NMR (CD3)2 SO delta 78.37 (d, J=2 Hz, 1H), 8.30 (d, J=1 Hz, 2H), 5.82 (s, 1H), (3.83 (s, 6H). 13 C NMR (CD3)2 SO delta 168.0, 167.3, 149.4, 137.1, 135.8, 132.5, 125.4, 123.7, 54.5, 53.4. Anal. Calcd for C11 H10 NO8: C, 48.49; H, 3.73; N, 4.71. Found: C, 48.27; H. 3.72; N, 4.76.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Pfizer INc.; US5919795; (1999); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, General procedure: To a dry and degassed dichloromethane (10mL) solution of 2,2?-dipyridylamine (1mmol) was added CuX (1mmol). The mixture was kept stirring under nitrogen at ambient temperature. After 1h, a yellow precipitate was formed. To the resulting suspension was added dropwise with stirring a solution of triphenylphosphine (1mmol) in dichloromethane (5mL). The mixture was stirred for another 4h, and then the solvent was evaporated to give a white or yellow residue. The solid residue was extracted with 10mL absolute dichloromethane under the nitrogen atmosphere while the extract was filtered and transferred to a nitrogen-protected flask. 10mL hexane was layered above the resulting solution afforded crystals of the complexes, which were washed with hexane.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Wu, Fengshou; Tong, Hongbo; Wang, Kai; Wang, Zheng; Li, Zaoying; Zhu, Xunjin; Wong, Wai-Yeung; Wong, Wai-Kwok; Journal of Photochemistry and Photobiology A: Chemistry; vol. 318; (2016); p. 97 – 103;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

It is a common heterocyclic compound, the copper-catalyst compound, Copper(I) bromide, cas is 7787-70-4 its synthesis route is as follows.,7787-70-4

General procedure: Compound 5c was prepared as described for 5a. In this respect, 2 (100 mg, 0.160 mmol) was reacted with [CuBr] (3c) (23 mg, 0.160 mmol). Appropriate work-up, gave 5c (111 mg, 0.144 mmol, 90% based on 2) as a brown solid Mp.: 180 C. IR (KBr, cm-1): nuC?C 1983 (w). 1H NMR (d6-DMSO, delta): 0.24 (s, 9 H, SiMe3), 0.30 (s, 9 H, SiMe3), 7.61 (ddd, 3JH7H6 = 4.7 Hz, 3JH7H8 = 7.3 Hz; 1 H, H7), 7.95 (ddd, 3JH2H1 = 6.3 Hz, 3JH2H3 = 6.6 Hz; 1 H, H2), 8.07 (ddd, 4JH8H6 = 1.5 Hz, 3JH8H7 = 7.3 Hz, 3JH8H9 = 7.8 Hz; 1 H, H8), 8.43 (m, 4JH3H1 = 1.0 Hz, 3JH3H2 = 6.6 Hz; 3JH3H4 = 8.0 Hz, 3JH9H8 = 7.8 Hz; 2 H, H3, H9), 8.67 (dd, 3JH6H7 = 4.7 Hz, 4JH6H8 = 1.5 Hz, 1 H, H6), 8.85 (d, 3JH4H3 = 8.0 Hz, 1 H, H4), 9.05 (dd, 3JH1H2 = 6.3 Hz, 1 H, 4JH1H3 = 1.0 Hz, 1 H, H1), 9.95 (s, 1 H, H5), 10.06 (s, 1 H, H10). ESI-MS (m/z (rel. intens.) in thf: [M++Br] 687 (100), [M+-CuBr + K] 662 (25). Anal. Calc. for C24H28N4CuBrPtSi2 (767.21 g/mol): C, 37.57; H, 3.67; N, 7.30. Found: C, 37.68; H, 3.63; N, 6.92%.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Al-Anber, Mohammed; Wetzold, Nora; Walfort, Bernhard; Rueffer, Tobias; Lang, Heinrich; Inorganica Chimica Acta; vol. 398; (2013); p. 124 – 131;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, General procedure: To a solution of (S,S)-iPr-pheboxH (0.051g, 0.173mmol) in dichloromethane (15mL), the corresponding copper(I) salt CuX (X=Cl, Br, I) (0.347mmol) was added and the mixture stirred at room temperature during 24h. Then, the reaction mixture was filtered via cannula, concentrated under reduced pressure to ca. 2mL and diethyl ether/n-hexane (1:2) (30mL) was added. The resulting solid was washed with n-hexane (3¡Á5mL) and vacuum-dried.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Vega, Esmeralda; De Julian, Eire; Borrajo, Gustavo; Diez, Josefina; Lastra, Elena; Gamasa, M. Pilar; Polyhedron; vol. 94; (2015); p. 59 – 66;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

A dry and Ar-flushed Schlenk flask was charged with P(OEt)3 (5.2 mL, 30.0 mmol) in benzene (30 mL). CuBr (4.3 g, 30.0 mmol) was added. After the mixture had stirred at r.t. for 1 h and at 80 C for 1 h, unsolved solid was removed by filtration under Ar atmosphere and solvents were evaporated from the filtrate. The resulted mixture was cooled down to -78 C and was washed with n-hexane (2*). The remained solid was dried under vacuum; this gave CuBr*P(OEt)3. Yield: 6.8 g (73%); a mixture of oil and solid.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Moriya, Kohei; Schwaerzer, Kuno; Karaghiosoff, Konstantin; Knochel, Paul; Synthesis; vol. 48; 19; (2016); p. 3141 – 3154;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”