Analyzing the synthesis route of 14172-91-9

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), 14172-91-9

14172-91-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), cas is 14172-91-9,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a solution of corresponding porphyrin, the copper complex(1.13 mmol) in methylene chloride (90 mL) Cu(NO3)2¡¤3H2O(2.30 mmol) in the mixture of acetic acid (5 mL) and acetic anhydride (2 mL) was added, and reaction mixture was stirred for 3 h at room temperature, with TLC monitoring (CHCl3-hexane 1:2). After completion of the reaction the solution was washed with water (200 mL), then with Na2CO3 solution, and the organic phase was separated and dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a CH2Cl2-hexane system (3:7).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), 14172-91-9

Reference£º
Article; Ol’shevskaya, Valentina A.; Alpatova, Viktoriya M.; Radchenko, Alexandra S.; Ramonova, Alla A.; Petrova, Albina S.; Tatarskiy, Victor V.; Zaitsev, Andrei V.; Kononova, Elena G.; Ikonnikov, Nikolay S.; Kostyukov, Alexey A.; Egorov, Anton E.; Moisenovich, Mikhail M.; Kuzmin, Vladimir A.; Bragina, Natalya A.; Shtil, Alexander A.; Dyes and Pigments; vol. 171; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

578743-87-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Chloro[l,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene]copper(I) (195.1 mg, 0.4 mmol) and silver triflate (102.7 mg, 0.4 mmol) were mixed under nitrogen in 25 mL flask and 10 mL of dry THF were added. Reaction mixture was stirred at RT for 30 minutes.Solution of 2,2′-bipyridine (62.4 mg, 0.4 mmol) in dry THF (5 mL) was added. Reaction mixture turned orange and was stirred at RT overnight. Resulting mixture was filtered through Celite and solvent was evaporated on rotovap. Recrystallization from CH2CI2 by vapor diffusion of EtaO gave 215 mg (70.9%) of orange crystals. Anal, calcd. forC38H44CUF3N4O3S: C, 60.26; H, 5.86; N, 7.40; Found: C, 60.18; H, 5.82; N, 7.38. Structure was confirmed by iH-NMR spectrum of [(IPR)Cu(bipy)]OTf (CDCb, 400MHz).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

Reference£º
Patent; THE UNIVERSITY OF SOUTHERN CALIFORNIA; THOMPSON, Mark; DJUROVICH, Peter; KRYLOVA, Valentina; WO2011/63083; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 578743-87-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

578743-87-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To an oven-dried screwed 20 mL vial were added (NHC)CuCl (c7 or c8, 0.2 mmol) suspended in dry THF (3 mL); in another vial, [tBu3PN]Li (1b, 42.3 mg, 0.95 eq.) was also dissolved in dry THF (3 mL), then the vial was put into glove-box fridge (-35 C) for one hour. Then the cold mixture was dropped into the (NHC)CuCl/THF suspension slowly under stirring and the suspension was turned into clear solution as the lithium salt added. After addition, the reaction mixture was kept at room temperature in glove box for 13 hours. After the reaction was completed, the volatile was removed under vacuum and dry hexane or pentane (7 mL) was added into the formed oily residue. The suspension obtained was kept stirring for another 15 mins at room temperature, then filtered through a short pad of neutral celite to get rid of precipitate. The filtrate was cooled down in the fridge (-35 C) for 3-4 hours to remove the unreacted lithium salt 1b further. Repeated once again to get the clear hexane or pentane filtrate. The filtrate was evaporated until white crystallized solid was formed, which is the catalytic active species (3 or 4). IPrCuCl (c7, 97 mg, 0.2 mmol); Obtain IPrCuNPtBu3 (3, 99 mg, 78%) as Colorless Solid; 1H NMR (C6D6, 600 MHz) delta 7.26-7.21 (br, m, 4H, m-ArH), 7.17-7.14 (br, m, 2H, p-ArH), 6.40 (s, 2H, NCH=), 2.83 (sep, 4H, J = 6.6 Hz, CH(CH3)2), 1.61 (d, 12H, J = 6.6 Hz, CH(CH3)2), 1.37 (d, 27H, J(PH) = 10.8 Hz, P(C(CH3)3)3), 1.20 (d, 12H, J = 6.6 Hz, CH(CH3)2); 13C NMR (C6D6, 151 MHz) delta 146.18, 136.50, 130.42, 128.68, 124.42, 122.05, 40.78, 40.49, 31.01, 29.33, 25.04, 24.42; 31P NMR (C6D6, 243 MHz) delta 26.35 (s); Elemental analysis calcd for [C39H63CuN3P+0.67 THF]: C, 69.84; H, 9.61; N, 5.86. Found: C, 69.48; H, 9.90; N, 6.19.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

Reference£º
Article; Bai, Tao; Yang, Yanhui; Han, Chao; Tetrahedron Letters; vol. 58; 15; (2017); p. 1523 – 1527;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of Copper(II) sulfate pentahydrate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) sulfate pentahydrate, 7758-99-8

7758-99-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) sulfate pentahydrate, cas is 7758-99-8,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Using a 50 mL volumetric flask, 1.208 g of copper sulfate as a metal salt was dissolved in 50 mL of distilled water to prepare a 0.1 mol / L CuSO 4 aqueous solution. Next, 0.02 g (3.3 ¡Á 10 -5 mol) of tetraphenylporphyrin (TPP) as a compound having a porphyrin-type skeleton, 0.02 g (3.3 ¡Á 10 -5 mol) of copper sulfate Aqueous solution of sodium carbonate and 0.032 g of sodium carbonate equivalent to copper sulfate to prevent corrosion of the reaction vessel, and the interior of the reaction vessel was purged with argon and sealed. Next, the reaction vessel was charged into the sand bath set at 350 C. The reaction temperature in the reaction vessel reached the reaction temperature in about 4 minutes.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) sulfate pentahydrate, 7758-99-8

Reference£º
Patent; UTSUNOMIYA UNIVERSITY; SATO, TAKAFUMI; ITOH, NAOTSUGU; ITO, SATOSHI; (22 pag.)JP5823988; (2015); B2;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about 10380-28-6

The chemical industry reduces the impact on the environment during synthesis,10380-28-6,Bis(8-quinolinolato)copper(II),I believe this compound will play a more active role in future production and life.

10380-28-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Bis(8-quinolinolato)copper(II), cas is 10380-28-6,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a mixture of K3PO4 (18.8 g, 88.7 mmol), CuII oxinate (780 mg,2.22 mmol), KI (3.68 g, 22.2 mmol) and 2 (10.0 g, 22.2 mmol), water(30 mL) and acetonitrile (30 mL) were added. The mixture was stirredat 120 C for 3 days. Then brine was added, and the mixture was extracted with EA. The combined organic layers were dried with anhydrous MgSO4 and concentrated under reduced pressure. The residue was purified on a silica gel column with PE:DCM (3:1) as eluent to give3 (3.27 g, 51%) as a white solid. 1H NMR (400 MHz, CDCl3): delta (ppm)7.53 (d, J=8.8 Hz, 1H), 7.39 (d, J=8.0 Hz, 1H), 7.29 (t, J=8.4 Hz,1H), 7.11 (d, J=8.0 Hz, 1H), 7.03 (s, 1H), 6.98 (t, J=7.4 Hz, 1H),6.88 (d, J=8.0 Hz, 1H), 6.34 (d, J=7.2 Hz, 1H), 6.23 (d, J=7.6 Hz,1H). 13C NMR (125 MHz, CDCl3): delta (ppm) 161.1, 160.1, 131.7, 130.5,127.7, 126.7, 125.0, 124.5, 124.0, 121.5, 114.6, 111.0, 87.7, 85.8.Anal. Calcd for C14H9BrO2 (%): C, 58.16; H, 3.14; Br, 27.64; O, 11.07;Found: C, 58.03; H, 3.02; O, 10.98.

The chemical industry reduces the impact on the environment during synthesis,10380-28-6,Bis(8-quinolinolato)copper(II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; He, Keqiang; Li, Weili; Tian, Hongkun; Zhang, Jidong; Yan, Donghang; Geng, Yanhou; Wang, Fosong; Organic electronics; vol. 57; (2018); p. 359 – 366;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 4-(Chloromethyl)-5-methyl-1,3-dioxol-2-one

14172-91-9, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14172-91-9 ,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), and cas is 14172-91-9, its synthesis route is as follows.

To a stirred solution of (meso-tetraphenylporphyrinato)copper(II) (1c; 237 mg, 0.35 mmol) inCHCl3 (530 mL) at room temperature, a solution of 25% aqueous nitric acid (freshly prepared fromfuming yellow HNO3, d = 1.52; large excess, 140 mL, 637 mmol) was added dropwise during ca5 min. The reaction mixture was intensively stirred under argon in a round-bottomed ask, protectedagainst light, for 30-40 min with TLC monitoring (CHCl3/n-hexane-1:1). Then, the mixture waspoured into aqueous solution of 5% NaHCO3 (200 mL), and shaken carefully in a separatory funnel.The separated organic layer was washed with water (4 200 mL), and dried with anhydrousMgSO4/Na2CO3. After evaporating the solvent, the residue was subjected to column chromatography(eluent: CHCl3/n-hexane1:1) to give (2-nitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (2c; 71 mg, 28%) and a mixture of dinitro-substituted isomers (150 mg, 56%). Thedinitro-isomers were separated on preparative TLC (CHCl3/n-hexane-1:1, four times developed),allowing isolation of: (a) (2,7-dinitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (3ca; 40 mg,15%); (b) (3,7-dinitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (3cb; 35.5 mg, 13%); (c)(2,8-dinitro-5,10,15,20-tetra-phenylporphyrinato)copper(II) (3cc) contaminated with small amountsof (3,7-dinitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (3cb) (30 mg, yield-ca 10%). 3cc can befurther purified by preparative TLC.

14172-91-9, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14172-91-9 ,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Mikus, Agnieszka; Rosa, Mariusz; Ostrowski, Stanis?aw; Molecules; vol. 24; 5; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 3-Piperazinobenzisothiazole hydrochloride

The chemical industry reduces the impact on the environment during synthesis,13395-16-9,Bis(acetylacetone)copper,I believe this compound will play a more active role in future production and life.

13395-16-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Bis(acetylacetone)copper, cas is 13395-16-9,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

The monodisperse CuPd alloy NPs with composition controlwere synthesized by using a modified version of our estab-lished recipe for the CoPd alloy NPs [14]. In a typical synthesis of Cu75Pd25NPs, copper(II) acetylacetonate (0.35 mmol, 90 mg)and palladium(II) acetylacetonate (0.1 mmol, 31 mg) were dis-solved in 3 mL of OAm in a 10 mL of glass vial. In a four-necked glass reactor that allows to study under inert atmosphere,200 mg of MB was dissolved in 3 mL of OAm and 7 mL of 1-octadecene at 80C under magnetic stirring. Next, the metal precursor mixture was quickly injected into the reactor under argon environment. The reaction was then proceed for 1 h before cooled down to room temperature. Then, the colloidal NPs mixture was transferred into two separate centrifuge tubeand acetone/ethanol (v/v = 7/3) was added into the tubes. TheNP product was separated by centrifugation at 8500 rpm for10 min.

The chemical industry reduces the impact on the environment during synthesis,13395-16-9,Bis(acetylacetone)copper,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Guengoermez, Kuebra; Metin, Oender; Applied Catalysis A: General; vol. 494; (2015); p. 22 – 28;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 6046-93-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate hydrate, 6046-93-1

6046-93-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate hydrate, cas is 6046-93-1,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

meso-Tetraphenylporphyrin (TPP)(2 g, 3.25 mmol) was dissolved in CH2Cl2 (160 mL) and methanol (50 mL). Cu(OAc)2¡¤H2O (1.2 g,5.85 mmol) was added and the mixture was heated to reflux for 2 h until all starting material wasconsumed (TLC, UV-vis). Solvents were evaporated to give a red-purple residue that was filteredthrough a short plug of silica. After filtration, the product 3 was obtained as a dark purple sparklingsolid (2.2 g, 3.25 mmol, 99%)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate hydrate, 6046-93-1

Reference£º
Article; Blom, Magnus; Norrehed, Sara; Andersson, Claes-Henrik; Huang, Hao; Light, Mark E.; Bergquist, Jonas; Grennberg, Helena; Gogoll, Adolf; Molecules; vol. 21; 1; (2016);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 578743-87-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

578743-87-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Carbazole (83.6mg, 0.5mmol) and NaH (12 mg, 0.5 mmol) was mixed with THF and 15 ml, atroom temperature under a nitrogen atmosphere until bubbling ceased (15 min) and stirred.Chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] was added copper (I) ((IPr) CuCl)(243.8mg, 0.5mmol), the reaction mixture was stirred for one hour did. Then, the mixture wasfiltered through a plug of Celite (registered trademark) under an inert atmosphere, and thesolvent was removed by rotary evaporation. The product was obtained as a white solid (170mg,55%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

Reference£º
Patent; Universal Display Corporation; Mark, E. Thomson; Peter, I. Jurobitchi; Valentina, Krirowa; (66 pag.)JP2015/91800; (2015); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 142-71-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The reactions of complexing between porphyrins and copper acetate were studied by means of spectrophotometry in the range of 293-318 K. The change in temperature during the experiment did not exceed¡À0.1 K.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Pukhovskaya; Nam, Dao Tkhe; Fien, Chan Ding; Domanina; Ivanova, Yu. B.; Semeikin; Russian Journal of Physical Chemistry; vol. 91; 9; (2017); p. 1692 – 1702; Zh. Fiz. Khim.; vol. 91; 9; (2017); p. 1508 – 1519,12;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”