Electric Literature of 13395-16-9, Healthcare careers for chemists are once again largely based in laboratories, although increasingly there is opportunity to work at the point of care, helping with patient investigation. Mentioned the application of 13395-16-9, Name is Bis(acetylacetone)copper.
Treatment of UCl4 with the hexadentate Schiff bases H 2L? in thf gave the expected [UL?Cl2(thf)] complexes [H2L? = N,N?-bis(3-methoxysalicylidene)-R and R = 2,2-dimethyl-1,3-propanediamine (i = 1), R = 1,3-propanediamine (i = 2), R = 2-amino-benzylamine (i = 3), R = 2-methyl-1,2-propanediamine (i = 4), R = 1,2-phenylenediamine (i = 5)]. The crystal structure of (UL4Cl 2(thf)] (4) shows the metal in a quite perfect pentagonal bipyramidal configuration, with the two Cl atoms in apical positions. Reaction of UCl 4 with H4L? in pyridine did not afford the mononuclear products [U(H2L?)Cl2(py)x] but gave instead polynuclear complexes [H4L? = N,N?-bis(3-hydroxysalicylidene)-R and R = 1,3-propanediamine (i = 6), R = 2-amino-benzylamine (i = 7) or R = 2-methyl-1,2-propanediamine (i = 8)]. In the presence of H4L6 and H4L7 in pyridine, UCl4 was transformed in a serendipitous and reproducible manner into the tetranuclear U(IV) complexes [Hpy]2[U 4(L6)2(H2L6) 2Cl6] (6a) and [Hpy]2[U4(L 7)2(H2L7)2Cl 6][U4(L7)2(H2L 7)2 Cl4(py)2] (7), respectively. Treatment of UCl4 with [Zn(H2L6)] led to the formation of the neutral compound [U4(L6) 2(H2L6)2Cl4(py) 2] (6b). The hexanuclear complex [Hpy]2[U 6(L8)4Cl10(py)4] (8) was obtained by reaction of UCl4 and H4L8. The centrosymmetric crystal structures of 6a·2HpyCl·2py, 6b·6py, 7·16py and 8·6py illustrate the potential of Schiff bases as associating ligands for the design of polynuclear assemblies.
Electric Literature of 13395-16-9, If you are hungry for even more, make sure to check my other article about Electric Literature of 13395-16-9
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”