Related Products of 1111-67-7, With the volume and accessibility of scientific research increasing across the world, it has never been more important to continue building, we’ve spent the past two centuries establishing. Mentioned the application of 1111-67-7, Name is Cuprous thiocyanate.
Copper (I) thiocyanate (CuSCN) is a cost-competitive hole selective contact for the emerging organic-inorganic hybrid perovskite solar cells. However, limitation of solvent is the main issue for getting an optimal thickness for pin-hole free selective contacts. We have developed various solvents such as mixture of propylsulfide with chlorobenzene (1:1), isopropanol with methylammonium iodide (10 mg/ml) and propylsulfide + isopropanol (1:2) + MAI (10 mg/ml) for dissolving CuSCN. It was found that perovskite layer was more stable once CuSCN coating laid on the top surface using the propylsulfide + isopropanol (1:2) + MAI (10 mg/ml) solvent than conventional propylsulfide by doctor blade technique. By employing low temperature solution-process techniques, power conversion achieved over 10% under full sun illumination by the proposed mixed solvent. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used expensive organic hole conductor (2,2?,7,7?-tetrakis-(N,N-di-p-methoxyphenylamine)9,9?-spirobifluorene (Spiro-OMeTAD)).
We’ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 1111-67-7, and how the biochemistry of the body works.Related Products of 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”