Never Underestimate The Influence Of Bis(acetylacetone)copper

If you are interested in 13395-16-9, you can contact me at any time and look forward to more communication. Electric Literature of 13395-16-9

Electric Literature of 13395-16-9, Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. In an article, authors is Sousa, once mentioned the application of Electric Literature of 13395-16-9, Name is Bis(acetylacetone)copper,molecular formula is C10H16CuO4, is a conventional compound.

The interaction of 2-pyridinecarboxaldehyde with N-tosyl-1,2-diaminobenzene leads to the isolation of two different products, {3-[ethoxy(2-pyridyl)methyl]-1-[(4-methylphenyl)sulfonyl]-2-(2-pyridyl)-2,3- dihydro-1H-benzo[d]imidazole}, L1, and {1-[(4-methylphenyl)sulfonyl]-2-(2-pyridyl)-2,3-dihydro-1H-benzo[d] imidazole}, L2, but not to the expected Schiff base 1-[(4-methylphenyl)sulfonamido]-2-[(2-pyridylmethylene)amino]benzene, HL3. Two kinds of complexes, containing the potentially tridentate and monoanionic [L3]- as a ligand, were obtained by different routes. ML3(p-Tos)(H2O)n complexes (p-TosH = p-toluenesulfonic acid; M = Co, Cu, Zn; n = 1-3) have been isolated by electrolysis of a solution phase composed of L1 and p-toluenesulfonic acid, using metal plates as the anode. Metal complexes of composition ML32(H2O)n (M = Mn, Co, Cu, Zn; n = 0-2) were obtained by template synthesis from M(acac)2, 2-pyridinecarboxaldehyde and N-tosyl-1,2-diaminobenzene. All these compounds have been characterised by elemental analyses, magnetic measurements, IR, mass spectrometry and, in the case of M = Zn, by 1H NMR spectroscopy. CuL3(p-Tos)(H2O), 1, ZnL3(p-Tos)(H2O), 2, CoL32, 3, CuL32, 4 and ZnL32 · 2CH3CN, 5, were also crystallographically characterised.

If you are interested in 13395-16-9, you can contact me at any time and look forward to more communication. Electric Literature of 13395-16-9

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”