Chemistry graduates have much scope to use their knowledge in a range of research sectors, including roles within chemical engineering, chemical and related industries, healthcare and more. Reference of 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.
Five copper(I) complexes having general formula [Cu2(mu-X) 2(kappa2-P,P-B-dppf)2] (X = Cl(1), Br(2), I(3), CN(4), and SCN(5)) were prepared starting with CuX and B-dppf in 1:1 molar ratio in DCM-MeOH (50:50 V/V) at room temperature. The complexes have been characterized by elemental analyses, IR, 1H NMR, 31P NMR and electronic spectral studies. Molecular structures for 1, 2 and 4 were determined crystallographically. Complexes 1, 2 and 4 exist as centrosymmetric dimers in which the two copper atoms are bonded to two bridging B-dppf ligands and two bridging (pseudo-)halide groups in a mu-eta1 bonding mode to generate nearly planar Cu2(mu-eta1-X)2 framework. Both bridging B-dppf ligands are arranged in antiperiplanar staggered conformation in 1 and 2 (mean value 56.40-56.76), and twisted from the eclipsed conformation (mean value 78.19) in 4. The Phi angle value in 4 is relatively larger as compared to 1 and 2. This seems to indicate that the molecular core [Cu2(mu-eta1-X)2] in 4 is a sterically demanding system that forces the B-dppf ligand to adopt a relatively strained conformation in comparison to less strained system in 1 and 2. All the complexes exhibit moderately strong luminescence properties in the solution state at ambient temperature.
If you are interested in 1111-67-7, you can contact me at any time and look forward to more communication. Reference of 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”