Chen, Changhao et al. published their research in ACS Applied Materials & Interfaces in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper catalyst has received great attention owing to the low toxicity and low cost. Copper nanoparticles can also catalyze the coupling reaction of nitrogen-containing nucleophiles, phenols, thiols, xanthogenates, selenium ruthenium nucleophiles and the like.SDS of cas: 20427-59-2

Micro-Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance was written by Chen, Changhao;Tian, Ze;Luo, Xiao;Jiang, Guochen;Hu, Xinyu;Wang, Lizhong;Peng, Rui;Zhang, Hongjun;Zhong, Minlin. And the article was included in ACS Applied Materials & Interfaces in 2022.SDS of cas: 20427-59-2 This article mentions the following:

Anti-icing superhydrophobic surfaces have attracted tremendous interests due to their repellency to water and extremely low ice affinity, whereas the weak durability has been the bottleneck for further applications. Surface durability is especially important in long-term exposure to low-temperature and high-humidity environments. In this study, a robust micro-nano-nanowire triple structure-held PDMS superhydrophobic surface was fabricated via a hybrid process: ultrafast-laser-prepared periodic copper microstructures were chem. oxidized, followed by modification of PDMS. The hedgehog-like surface structure was composed of microcones, densely grown nanowires, and tightly combined PDMS. The capillary force difference in micro-nanostructures drove PDMS solutions to distribute evenly, bonding fragile nanowires to form stronger composite cones. PDMS replaced the commonly used fragile fluorosilanes and protected nanowires from breaking, which endowed the surfaces with higher robustness. The ductile PDMS-nanowire composites possessed higher resiliency than brittle nanowires under a load of 1 mN. The surface kept superhydrophobic and ice-resistant after 15 linear abrasion cycles under 1.2 kPa or 60 icing-deicing cycles under -20掳C or 500 tape peeling cycles. Under a higher pressure of 6.2 kPa, the contact angle (CA) was maintained above 150掳 until the abrasion distance exceeded 8 m. In addition, the surface exhibited a rare spontaneously optimized performance in the icing-deicing cycles. The ice adhesion strength of the surface reached its lowest value of 12.2 kPa in the 16th cycle. Evolution of surface roughness and morphol. were combined to explain its unique U-shaped performance curves, which distinguished its unique degradation process from common surfaces. Thus, this triple-scale superhydrophobic surface showed a long-term anti-icing performance with high deicing robustness and low ice adhesion strength. The proposed nanostructure-facilitated uniform distribution strategy of PDMS is promising in future design of durable superhydrophobic anti-icing surfaces. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2SDS of cas: 20427-59-2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper catalyst has received great attention owing to the low toxicity and low cost. Copper nanoparticles can also catalyze the coupling reaction of nitrogen-containing nucleophiles, phenols, thiols, xanthogenates, selenium ruthenium nucleophiles and the like.SDS of cas: 20427-59-2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Shinde, Pragati A. et al. published their research in Small in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. Formula: CuH2O2

All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor was written by Shinde, Pragati A.;Chodankar, Nilesh R.;Abdelkareem, Mohammad Ali;Patil, Swati J.;Han, Young-Kyu;Elsaid, Khaled;Olabi, Abdul Ghani. And the article was included in Small in 2022.Formula: CuH2O2 This article mentions the following:

Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochem. devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2Se (NiCuSe) pos. electrode and FeSe nanoparticles neg. electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent elec. conductivity results in superior electrochem. features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy d. of 87.6 Wh kg-1 at a specific power d. of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Formula: CuH2O2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. Formula: CuH2O2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Han, Lu et al. published their research in Ceramics International in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. COA of Formula: CuH2O2

In-situ generation Cu2O/CuO core-shell heterostructure based on copper oxide nanowires with enhanced visible-light photocatalytic antibacterial activity was written by Han, Lu;Zhan, Weiting;Liang, Xu;Zhang, Wei;Huang, Ruibin;Chen, Rongsheng;Ni, Hongwei. And the article was included in Ceramics International in 2022.COA of Formula: CuH2O2 This article mentions the following:

As visible light-driven photocatalysts in wastewater treatment, Cu2O/CuO composites have garnered considerable attention. Herein, Cu2O/CuO core-shell nanowires were fabricated directly on a Cu mesh using a simple two-step synthesis process involving a wet chem. method and rapid annealing. Unlike conventional composite nanowires, controllable core-shell nanowires exhibit high photoelectrochem. properties and overcome the problems associated with the recovery of powder-based photocatalysts. The presence and structural distribution of the Cu2O/CuO core-shell nanowires were confirmed using X-ray diffraction, XPS and transmission electron microscopy. Among the samples subjected to different rapid annealing temperatures for 180 s, the sample exposed to rapid annealing at 350掳C achieved the highest photocurrent d. of -6.96 mA cm-2. In the core-shell nanowires fabricated on the samples, the ratio of Cu2O/CuO was 1:1. The photocatalytic activity of the Cu2O/CuO nanowire samples was also determined by measuring methyl blue degradation to determine their applicability in wastewater treatment. A remarkable photocatalytic degradation rate of 91.6% was achieved at a loading bias voltage of -0.5 V. The Cu2O/CuO heterojunction enhanced the photodegradation of the samples because the different bandgaps improved the dissociation of the photogenerated electron-hole pairs. Furthermore, the antibacterial activity of the Cu2O/CuO nanowires exhibited considerable resistance against Escherichia coli and photocatalytic antibacterial treatment for only 20 min under visible light killed 106 CFU/mL of E. coli. Therefore, the Cu2O/CuO controllable core-shell nanowires with a high photodegradation performance and excellent antibacterial activity under general illumination show diverse applications in water treatment. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2COA of Formula: CuH2O2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. COA of Formula: CuH2O2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Lei, Qiong et al. published their research in Nature Communications in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. It is clear from the impact copper catalysis has had on organic synthesis that copper should be considered a first line catalyst for many organic reactions.Reference of 20427-59-2

Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction was written by Lei, Qiong;Huang, Liang;Yin, Jun;Davaasuren, Bambar;Yuan, Youyou;Dong, Xinglong;Wu, Zhi-Peng;Wang, Xiaoqian;Yao, Ke Xin;Lu, Xu;Han, Yu. And the article was included in Nature Communications in 2022.Reference of 20427-59-2 This article mentions the following:

Copper (Cu)-based catalysts generally exhibit high C2+selectivity during the electrochem. CO2 reduction reaction (CO2RR). However, the origin of this selectivity and the influence of catalyst precursors on it are not fully understood. We combine operando X-ray diffraction and operando Raman spectroscopy to monitor the structural and compositional evolution of three Cu precursors during the CO2RR. The results indicate that despite different kinetics, all three precursors are completely reduced to Cu(0) with similar grain sizes (鈭?1 nm), and that oxidized Cu species are not involved in the CO2RR. Furthermore, Cu(OH)2– and Cu2(OH)2CO3-derived Cu exhibit considerable tensile strain (0.43%鈭?.55%), whereas CuO-derived Cu does not. Theor. calculations suggest that the tensile strain in Cu lattice is conducive to promoting CO2RR, which is consistent with exptl. observations. The high CO2RR performance of some derived Cu catalysts is attributed to the combined effect of the small grain size and lattice strain, both originating from the in situ electroreduction of precursors. These findings establish correlations between Cu precursors, lattice strains, and catalytic behaviors, demonstrating the unique ability of operando characterization in studying electrochem. processes. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Reference of 20427-59-2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. It is clear from the impact copper catalysis has had on organic synthesis that copper should be considered a first line catalyst for many organic reactions.Reference of 20427-59-2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Moimane, Tiisetso et al. published their research in Minerals Engineering in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. Recommanded Product: Cuprichydroxide

Limitations of conventional sulphidisation in restoring the floatability of oxidised chalcocite was written by Moimane, Tiisetso;Peng, Yongjun. And the article was included in Minerals Engineering in 2022.Recommanded Product: Cuprichydroxide This article mentions the following:

The secondary copper sulfide mineral, chalcocite, is the second most important copper mineral and its flotation is significantly affected by the surface oxidation There is scarcity of reports on sulphidisation of oxidised chalcocite and literature suggests that the conventional sulphidisation experiences difficulties in activating sulfides that are prone to oxidation Thus the objective of this study was to understand the sulphidisation of chalcocite, the copper sulfide most prone to surface oxidation To achieve this, surface anal. by Cryogenic XPS, Cyclic Voltammetry measurements and flotation tests were adopted. It was found that the lower flotation recovery of the oxidised chalcocite after sulphidisation at 0.10 V vs. standard hydrogen electrode was attributed to partial sulphidisation, 36.2%, of the Cu(II) oxidation species to form the desired Cu(I)-S product, while 62.8% of the species remained unsulphidised. It was revealed that all the Cu(II) oxidation species on chalcocite were sulphidised to the desired Cu(I)-S product at the lower potential of -0.20 V. Intriguingly, the flotation recovery was even lower than that obtained at 0.10 V. The limited improvement in flotation even though the surface was fully sulphidised was attributed to the high electrochem. activity and re-oxidation of the Cu(I)-S product formed. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Recommanded Product: Cuprichydroxide).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. Recommanded Product: Cuprichydroxide

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Gaxiola-Lopez, Julio C. et al. published their research in Langmuir in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents has turned up as an exceedingly robust synthetic tool. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. COA of Formula: CuH2O2

3D Printed Parahydrophobic Surfaces as Multireaction Platforms was written by Gaxiola-Lopez, Julio C.;Lara-Ceniceros, Tania E.;Silva-Vidaurri, Luis Gerardo;Advincula, Rigoberto C.;Bonilla-Cruz, Jose. And the article was included in Langmuir in 2022.COA of Formula: CuH2O2 This article mentions the following:

Parahydrophobic surfaces (PHSs) composed of arrays of cubic 渭-pillars with a double scale of roughness and variable wettability were systematically obtained in one step and a widely accessible stereolithog. Formlabs 3D printer. The wettability control was achieved by combining the geometrical parameters (H = height and P = pitch) and the surface modification with fluoroalkyl silane compounds Homogeneous distribution of F and Si atoms onto the pillars was observed by XPS and SEM-EDAX. A nano-roughness on the heads of the pillars was achieved without any post-treatment. The smallest P values lead to surfaces with static contact angles (CAs) >150掳 regardless of the H utilized. Interestingly, the relationship 0.6 鈮?H/P 鈮?2.6 obtained here was in good agreement with the H/P values reported for nano- and submicron pillars. Furthermore, exptl. CAs, advancing and receding CAs, were consistent with the theor. prediction from the Cassie-Baxter model. Structures covered with perfluorodecyltriethoxysilane with high H and short P lead to PHSs. Conversely, structures covered with perfluorodecyltrimethoxysilane exhibited a superhydrophobic behavior. Finally, several aqueous reactions, such as precipitation, coordination complex, and nanoparticle synthesis, were carried out by placing the reactive agents as microdroplets on the parahydrophobic pillars, demonstrating the potential application as chem. multi-reaction array platforms for a large variety of relevant fields in microdroplet manipulation, microfluidics systems, and health monitoring, among others. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2COA of Formula: CuH2O2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents has turned up as an exceedingly robust synthetic tool. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. COA of Formula: CuH2O2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Wang, Lixia et al. published their research in Separation and Purification Technology in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. Recommanded Product: 20427-59-2

Fabrication of breathable Janus membranes with gradient unidirectional permeability by micro-imprinting was written by Wang, Lixia;Zhou, Baokai;Bi, Zhaojie;Wang, Chen;Zheng, Lun;Niu, Hongbin;Cui, Pengyuan;Wang, Dongfang;Li, Qian. And the article was included in Separation and Purification Technology in 2022.Recommanded Product: 20427-59-2 This article mentions the following:

The realization of the directional water transport function of Janus membrane is based on the formation of its asym. structure. Nevertheless, the persistent problems of unstable directional water transport and poor adhesion between membranes limit their application. In this paper, based on electrospinning, the copper mesh with an in-situ growth conical nanoneedle structure was innovatively selected as an imprint template, and the conical structure was imprinted between the blended TPU/PAN membrane and the PAN membrane to form a three-layer laminated composite membrane. The gradient unidirectional permeability Janus membrane was developed, which not only constructed an asym. hierarchical structure but also realized the progressive wetting function inside. The water absorption tests showed that the water storage capacity was as high as 2047.37% of its weight Moreover, stable gas permeability could be achieved under 20 cm water column pressure when the gas flow rate was 0.05 kg/cm3. Importantly, the membrane exhibited ultra-stable unidirectional water transport under strong mech. stimulation and prolonged gravity, which provided possibility for preparation of Janus membranes with high durability, strong mech. damage resistance and good air permeability. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Recommanded Product: 20427-59-2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper of different valence states can be used to catalyze the coupling reaction, especially the Ullmann coupling reaction. Recommanded Product: 20427-59-2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Rahmati, Zeinab et al. published their research in Bioelectrochemistry in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper nanoparticles can also catalyze the coupling reaction of phenols, thiols, xanthogenates, nitrogen-containing nucleophiles, selenium ruthenium nucleophiles and the like.Computed Properties of CuH2O2

Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate was written by Rahmati, Zeinab;Roushani, Mahmoud;Hosseini, Hadi;Choobin, Hamzeh. And the article was included in Bioelectrochemistry in 2022.Computed Properties of CuH2O2 This article mentions the following:

The development of advanced electrode materials and the combination of aptamer with them have improved dramatically the performance of aptasensors. Herein, a new architecture based on copper hydroxide nanorods (Cu(OH)2 NRs) are directly grown on the surface of screen printed carbon electrode (SPCE) using a two-step in situ, very simple and fast strategy and was used as a high-performance substrate for immobilization of aptamer strings, as well as an electrochem. probe to development a label-free electrochem. aptasensor for SARS-CoV-2 spike glycoprotein measurement. The Cu(OH)2 NRs was characterized using X-ray Diffraction (XRD) and electron microscopy (FESEM). In the presence of SARS-CoV-2 spike glycoprotein, a decrease in Cu(OH)2 NRs-associated peak current was observed that can be owing to the target-aptamer complexes formation and thus blocking the electron transfer of Cu(OH)2 NRs on the surface of electrode. This strategy exhibited wide dynamic range in of 0.1 fg mL-1 to 1.2μg mL-1 and with a high sensitivity of 1974.43μA mM-1 cm-2 and low detection limit of 0.03 ± 0.01 fg mL-1 of SARS-CoV-2 spike glycoprotein deprived of any cross-reactivity in the presence of possible interference species. In addition, the good reproducibility, repeatability, high stability and excellent feasibility in real samples of saliva and viral transport medium (VTM) were found from the provided aptasensor. Also, the aptasensor efficiency was evaluated by real samples of sick and healthy individuals and compared with the standard polymerase chain reaction (PCR) method and acceptable results were observed In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Computed Properties of CuH2O2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper nanoparticles can also catalyze the coupling reaction of phenols, thiols, xanthogenates, nitrogen-containing nucleophiles, selenium ruthenium nucleophiles and the like.Computed Properties of CuH2O2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Shahane, Shraddha Pravin et al. published their research in Environmental Science and Pollution Research in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. It is clear from the impact copper catalysis has had on organic synthesis that copper should be considered a first line catalyst for many organic reactions.Product Details of 20427-59-2

Estimation of health risks due to copper-based nanoagrochemicals was written by Shahane, Shraddha Pravin;Kumar, Arun. And the article was included in Environmental Science and Pollution Research in 2022.Product Details of 20427-59-2 This article mentions the following:

This study estimated health risks due to two types of copper-based nanoagrochems. (Cu (OH)2 and CuO nanoparticles (NPs)), during inadvertent ingestion of soil and consumption of leafy vegetables for a hypothetical exposure scenario. The dissolution of copper-based nanoagrochems. in human digestive system was considered for estimating realistic doses. No risk was found during soil ingestion (hazard quotient (HQ) <1). HQ (no dissolution of Cu (OH) 2 nanopesticides) (HQ= 0.015) comes out to be 2 times higher than that of HQ (100% dissolution of Cu (OH)2 nanopesticides into copper ions) (HQ= 0.007). In case of risk from consumption of leafy vegetables, the following order of risk was found (high to low HQ value): Cu (OH)2 (HQ= 1925) >CuO NPs (1402). Combined exposure of Cu (OH)2 nanopesticide through soil ingestion as well as consumption of contaminated edible leafy vegetables resulted in health risks. The calculated maximum allowable applicable concentration values of Cu (OH)2 and CuO NPs without posing risk to human and plant toxicity were found to be 1.14 and 0.45 mg/L, resp. These findings can be used now for deciding safe use of copper-based nanoagrochems. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Product Details of 20427-59-2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. It is clear from the impact copper catalysis has had on organic synthesis that copper should be considered a first line catalyst for many organic reactions.Product Details of 20427-59-2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Cabello, Ana P. et al. published their research in Journal of Materials Science in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. The copper-mediated C-C, C-O, C-N, and C-S bond formation is a part of one oldest reaction, emphasizing the Ullmann cross-coupling reaction.Name: Cuprichydroxide

In situ growth of nanostructured copper and zinc mixed oxides on brass supports as efficient microreactors for the catalytic CO oxidation was written by Cabello, Ana P.;Ulla, Maria A.;Zamaro, Juan M.. And the article was included in Journal of Materials Science in 2022.Name: Cuprichydroxide This article mentions the following:

This work analyzed the in situ growth of nanostructured films of copper and zinc mixed oxides on brass substrates by a simple vapor oxidation route and their use as microreactors for the catalytic oxidation of CO. Thin and well-anchored films of nano-oxides were obtained, while the evolution over time of the physicochem. characteristics during growth was studied by XRD, SEM, EDS, LRS and XPS. At short treatment times a total coverage of the substrate with nano-oxide growths was obtained in a sequence in which first a base layer of zinc oxide was produced over which, subsequently, an increasing surface proportion of copper oxides progressively evolved. This stratification is a unique characteristic that contrasts with that of films obtained by conventional thermal treatments in air in which an outer layer of zinc oxide is produced. In this way, the study shed light on the understanding of the in situ growth mechanism of nano-oxides on brass substrates. Furthermore, this system showed a good performance for the catalytic CO oxidation reaction at relatively low temperatures, combining several attributes such as activity, reaction stability, low-cost materials and a simple and mild synthetic methodol. The non-noble metal-based microreactor with highly stabilized nano-oxide structures onto brass became an efficient and low-cost alternative for the catalytic CO oxidation reaction. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Name: Cuprichydroxide).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. The copper-mediated C-C, C-O, C-N, and C-S bond formation is a part of one oldest reaction, emphasizing the Ullmann cross-coupling reaction.Name: Cuprichydroxide

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”