A new synthetic route of Copper(II) trifluoromethanesulfonate

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

LigandH2L2 (100 mg, 0.275 mmol)was added to the solutionof Cu(OTf)2 (298 mg, 0.826 mmol) in 10mLMeNO2 forminga clear light blue coloured solution. The reaction mixture wasstirred for 30 min at 50 C. The solution was filtered andleft in open air for slow evaporation. X-ray quality light bluecrystals were collected after 24 h. (Yield: 64%). Anal. Calcd.for C24H36Cu4F12N10O30S4: C, 18.54; H, 2.33; N, 9.01%.Found. C, 18.14; H, 2.82; N, 8.74%. IR (nu, cm-1): 3424.20(H2O); 1681.07 (C=O); 1638.57 (C=N).

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Research on new synthetic routes about Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

7787-70-4, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route., 7787-70-4

The ligand (50.0 mg, 0.11 mmol) was added to a suspension of copper(II) halogenide (0.11 mmol) in methanol (3 ml). The mixture was stirred at r. t. for 16 h. The precipitate was then filtered off and dried in vacuo. The pure compounds were obtained by recrystallization from dichloromethane and pentane.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

Copper bromide (0.079 g, 0.55 mmol) was added to 30 mL of ppdq (0.200 g, 0.55 mmol) In a solution of CH2Cl2, the mixture was stirred at room temperature to form a red suspension, the reaction mixture was filtered, and the solvent was removed under reduced pressure. A red powder was obtained which was recrystallized from CH2Cl2 to give red crystals: 0.238 g, 85.3%.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Patent; Hubei University; Liu Li; Guo Bangke; (13 pag.)CN109970769; (2019); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of Cuprouschloride

With the synthetic route has been constantly updated, we look forward to future research findings about Cuprouschloride,belong copper-catalyst compound

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7758-89-6, name is Cuprouschloride. This compound has unique chemical properties. The synthetic route is as follows. 7758-89-6

EXAMPLE 1 N2-(4-Bromophenyl)-5-trifluoromethyl-1,3-benzoxazol-2-amine 4-Bromophenyl isothiocyanate (1.667 g, 7.785 mmol) was added to a solution of 2-amino-4-trifluoromethylphenol (1.379 g, 7.785 mmol) in tetrahydrofuran (THF) (100 mL) and the reaction was stirred at room temperature for about 16 hours then at about 50 C. for about another 5 hours. Copper (I) chloride (0.771 g, 7.785 mmol) and triethylamine (1.08 mL, 7.785 mmol) were added, and the mixture was stirred at room temperature for about 72 hours and then at about 50 C. for about another 18 hours. Additional copper (I) chloride (0.385 g) was added and the reaction was stirred at about 60 C. for about another 2 hours. The reaction was concentrated under reduced pressure, dissolved in methanol (200 mL), filtered through a pad of diatomaceous earth and the solvent removed in vacuo to afford N2-(4-bromophenyl)-5-trifluoromethyl-1,3-benzoxazol-2-amine as a brown solid (3.90 g, 140% of theory); RP-HPLC Rt 17.627 min, 77% purity (5% to 85% acetonitrile/0.1 M aqueous ammonium acetate, buffered to pH 4.5, over 20 min at 1 mL/min; lambda=254 nm; Waters Deltapak C18, 300 A, 5 mum, 150*3.9 mm column); and m/z 354.9 and 356.9 (M-H)-.

With the synthetic route has been constantly updated, we look forward to future research findings about Cuprouschloride,belong copper-catalyst compound

Reference£º
Patent; Wishart, Neil; Ritter, Kurt; US2003/9034; (2003); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of Copper(II) sulfate pentahydrate

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) sulfate pentahydrate,belong copper-catalyst compound

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7758-99-8, name is Copper(II) sulfate pentahydrate. This compound has unique chemical properties. The synthetic route is as follows. 7758-99-8

Using a 50 mL volumetric flask, 1.208 g of copper sulfate as a metal salt was dissolved in 50 mL of distilled water to prepare a 0.1 mol / L CuSO 4 aqueous solution. Next, 0.02 g (3.3 ¡Á 10 -5 mol) of tetraphenylporphyrin (TPP) as a compound having a porphyrin-type skeleton, 0.02 g (3.3 ¡Á 10 -5 mol) of copper sulfate Aqueous solution of sodium carbonate and 0.032 g of sodium carbonate equivalent to copper sulfate to prevent corrosion of the reaction vessel, and the interior of the reaction vessel was purged with argon and sealed. Next, the reaction vessel was charged into the sand bath set at 350 C. The reaction temperature in the reaction vessel reached the reaction temperature in about 4 minutes.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) sulfate pentahydrate,belong copper-catalyst compound

Reference£º
Patent; UTSUNOMIYA UNIVERSITY; SATO, TAKAFUMI; ITOH, NAOTSUGU; ITO, SATOSHI; (22 pag.)JP5823988; (2015); B2;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

A solution of Cu(OTf)2 (90.0 mg, 0.249 mM) in methanol was added to a solution of HLpz (57.0 mg, 0.250 mM) and triethylamine (25.0 mg, 0.250 mM) in methanol, affording a dark blue solution. A solution of NaN3 (16.3 mg, 0.250 mM) was then layered on the above solution from which blue crystals of 4 suitable for X-ray analysis were obtained (54 mg, 65% yield). Anal. Calcd for C12H11CuN7O: C,43.31; H, 3.33; N, 29.46. Found: C, 43.68; H, 3.35; N, 29.59. UV-vis (CH3OH) lambdamax, nm(epsilon, M-1 cm-1)]: 346 (5000), 637 (240). FTIR (KBr): 2855, 2054, 1624, 1366, 1168, 1043,773 cm-1. EPR (9.447 GHz, Mod. Amp. 5.0 G, CH3OH, 77 K): g|| = 2.249, g? 2:037,and A|| = 170 G. ESI-MS (MeOH): m/z = 355 [Cu(Lpz)N3 + Na]+, 687 {[Cu(Lpz)N3]2 + Na}+, 1019 {[Cu(Lpz)N3]3 + Na}+.

With the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Article; Houser, Robert P.; Wang, Zhaodong; Powell, Douglas R.; Hubin, Timothy J.; Journal of Coordination Chemistry; vol. 66; 23; (2013); p. 4080 – 4092;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extended knowledge of Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 7787-70-4, Copper(I) bromide. This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.7787-70-4

Compound 2 (23mg, 0.05mmol) in dichloromethane (2mL) was slowly added on a solution of copper bromide (7.2mg, 0.05mmol) in acetonitrile (2mL) at-60C. The orange-red solution resulting from complete diffusion was slowly evaporated at r.t. to afford compound 6 (quantitative yield) as colorless crystals suitable for an X-ray diffraction analysis. Mp=93C. 1H NMR (CDCl3, 300MHz): delta 5.21 (s, 4H, =CH2), 4.30-3.95 (m, 8H, CH2-C=), 4.00-2.35 (m, 24H). Br2C20Cu2H36O4S4 (755.56): calcd C 31.79, H, 4.80; found: C 31.09, H, 4.22.

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Carel, Guillaume; Madec, David; Saponar, Alina; Saffon, Nathalie; Nemes, Gabriela; Rima, Ghassoub; Castel, Annie; Journal of Organometallic Chemistry; vol. 755; (2014); p. 72 – 77;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Discovery of Copper(I) bromide

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1 mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martn, Enrique; Lemus, Luis; Costamagna, Juan; Faras, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2015); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Bis(acetylacetone)copper

With the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Bis(acetylacetone)copper, cas is 13395-16-9, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

A yellow solution of H4L (0.30mmol, 0.068g) in dmf (6mL) was added to a turquoise solution of Cu(acac)2 (0.30mmol, 0.079g) in dmf (20mL). The immediately formed green solution was refluxed for 3h and left for slow evaporation. X-ray quality blue crystals of 3¡¤1.5dmf were formed after 2months, which were filtered off and dried under vacuum. (Yield: 0.053g, ?60%). The solid was analyzed as solvent free. C44H56Cu4N4O18 requires: C, 44.67; H, 4.77; N, 4.73%. Found: C, 44.49; H, 4.74; N, 4.70. FT-IR (KBr pellets, cm-1): 3553(s), 3477(s), 3414(s), 1638(s), 1617(vs), 1578(s), 1553(s), 1533(s), 1462(w), 1413(m), 1384(m), 1355(s), 1275(s), 1189(s), 1020(s), 937(s), 782(s), 684(m), 653(w), 613(s), 480(m), 455(s)., 13395-16-9

With the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Reference£º
Article; Lazarou, Katerina N.; Savvidou, Aikaterini; Raptopoulou, Catherine P.; Psycharis, Vassilis; Polyhedron; vol. 152; (2018); p. 125 – 137;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

14172-91-9 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) 3722750, acopper-catalyst compound, is more and more widely used in various fields.

14172-91-9, 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,14172-91-9

General procedure: To a solution of corresponding porphyrin, the copper complex(1.13 mmol) in methylene chloride (90 mL) Cu(NO3)2¡¤3H2O(2.30 mmol) in the mixture of acetic acid (5 mL) and acetic anhydride (2 mL) was added, and reaction mixture was stirred for 3 h at room temperature, with TLC monitoring (CHCl3-hexane 1:2). After completion of the reaction the solution was washed with water (200 mL), then with Na2CO3 solution, and the organic phase was separated and dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a CH2Cl2-hexane system (3:7).

14172-91-9 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) 3722750, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Ol’shevskaya, Valentina A.; Alpatova, Viktoriya M.; Radchenko, Alexandra S.; Ramonova, Alla A.; Petrova, Albina S.; Tatarskiy, Victor V.; Zaitsev, Andrei V.; Kononova, Elena G.; Ikonnikov, Nikolay S.; Kostyukov, Alexey A.; Egorov, Anton E.; Moisenovich, Mikhail M.; Kuzmin, Vladimir A.; Bragina, Natalya A.; Shtil, Alexander A.; Dyes and Pigments; vol. 171; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”