Share a compound : Copper(II) trifluoromethanesulfonate

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

The copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate,cas is 34946-82-2, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole) (L)For 1: 1;L (0.0424 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL)CH3CN (4 mL), water heat 100 oC three days later slowly to room temperature.After the opening, there are yellow rod-like crystals suitable for X-ray single crystal diffraction analysis. Yield: 35% (based on L calculation).

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104557984; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

General procedure: 0.022g (0.222mmol) of CuCl was added to 0.180g (0.109mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution at -35C. After stirring the resultant solution for 5min, the yellowish brown solution formed, which was filtered, and the filtrate was concentrated. A solution of Et2O (60mL) was added into the filtrate to precipitate the product at -35C. The precipitate was then washed with Et2O and dried to give [PPh4]2[3a] (0.107g, 0.058mmol, 53% based on [PPh4]2[1]). Similarly, under the same reaction conditions, using CuBr, we have isolated a yellowish brown solid of [PPh4]2[3b] (80% based on [PPh4]2[1]) upon crystallization from Et2O/MeCN.

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) trifluoromethanesulfonate

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

L (0.0424 g, 0.2 mmol), Cu (CF3SO3)2(0.0691g,0.2mmol)H2O (6 mL), CH3CN (4 mL), water and heat 100Oslow C down to room temperature after three days.After opening the autoclave there for X- ray diffraction analysis of the yellow rod-like crystals.Yield: 35%

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (10 pag.)CN104557986; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67416; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The origin of a common compound about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

With the complex challenges of chemical substances, we look forward to future research findings about 578743-87-0,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, and cas is 578743-87-0, its synthesis route is as follows.,578743-87-0

General procedure: Cu(I)-NHC 1a-g (0.04 mmol, 1.0 equiv) and CDCl3 (0.4 mL, degassed by bubbling argon for 30 min) were added into a flame-dried NMR tube. (CD3)2SO (0.4 mL) was used for 1h (0.04 mmol), 1i (0.02 mmol), and 1j (0.02 mmol). The NMR tube was closed with a septum and equipped with an air balloon (approximate 500 mL) containing approximately 100 mL of O2 (4.5 mmol, 112 equiv.) and approximately 12.6 mL of H2O (gas, 0.56 mmol, 14 equiv., air relative humidity = 75%). The solution (not agitated) was placed at room temperature and was monitored by 1H NMR. 100 C was used for the decomposition of 1h, and 150 C was used for the decomposition of 1i and 1j. The precipitate in the NMR tube was removed by quick filtration using a membrane filter before each 1H NMR measurement. The ratio of Cu-NHC, urea, and imidazolium were calculated through the integration of 1H NMR, using the normalization method. The characterization of products could be found in the previous study [32].

With the complex challenges of chemical substances, we look forward to future research findings about 578743-87-0,belong copper-catalyst compound

Reference£º
Article; Li, Dazhi; Ollevier, Thierry; Journal of Organometallic Chemistry; vol. 906; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Discovery of Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

7787-70-4, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route., 7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid. (0027) [CuBr(CNXyl)3] (1). Yield 530mg, 99%. Anal. Calc. for C27H27N3BrCu: C, 60.39; H, 5.07; N, 7.83. Found: C, 59.88; H, 4.89; N, 7.70%. HRESI+-MS, m/z: 325.0756 ([M-(XylNC)2]+, calcd 325.0760). IR spectrum in KBr, selected bands, cm-1: 2136 s nu(C?N). 1H NMR in CDCl3, delta: 2.49 (s, 6H, CH3), 7.11 (d, J 7.6Hz, 2H, aryl) 7.23 (d, J 7.6Hz, 1H, aryl). 13C{1H} NMR in CDCl3, delta: 18.95 (CH3), 127.92, 129.33, 135.49 (aryl).

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Research on new synthetic routes about Copper(I) bromide

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

A mixture of CuBr (28.7mg, 0.2mmol) and dppp (82.5mg, 0.2mmol) with an excess of batho (66.5mg, 0.2mmol) were dissolved in CH2Cl2 (5mL) and CH3OH (5mL) solution, stirred at room temperature for 6h. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature to yield yellow crystalline products. Yield: 80%. Anal. Calc. for C53H50BrCuN2O2P2: C, 66.84; H, 5.29; N, 2.94. Found: C, 66.97; H, 5.15; N, 2.88%. IR (KBr disc, cm-1): 3378s, 3048w, 2858w, 2580w, 1616w, 1556m, 1515m, 1433s, 1414m, 1229m, 1026s, 998w, 767m, 740s, 698vs, 513s, 482m. 1H NMR (600MHz, CDCl3, 298K): delta 7.87-8.98 (d, 6H, batho CH), 7.56-7.68 (m, 10H, batho CH), 7.41-7.24 (m, 20H, dppp CH), 2.91-2.81 (m, 4H, CH2), 2.78-2.63 (m, 2H, CH2); 31P NMR (400MHz, CDCl3, 298K): -12.25, -14.84.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yu, Xiao; Fan, Weiwei; Wang, Guo; Lin, Sen; Li, Zhongfeng; Liu, Min; Yang, Yuping; Xin, Xiulan; Jin, Qionghua; Polyhedron; vol. 157; (2019); p. 301 – 309;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some scientific research about Copper(II) trifluoromethanesulfonate

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 20 mL vial with heating, anhydrous copper(II) trifluoromethanesulfonate(221 mg, 0.61 mmol) was dissolved in 15 mL of90% EtOH. After cooling to room temperature, HL1 (200 mg,0.61 mmol) was added to the pale blue solution, which became bluegreen.The mixture was heated to boiling to ensure all reactants weredissolved, and then cooled to room temperature, at which point thesolution was green-blue and contained a teal precipitate. The precipitatewas isolated via gravity filtration as a bright teal powder (256 mg, 71%). HR-MS (ESI, MeOH) m/z: [L1Cu]+ Calcd. for[CuC20H12N3O2]+ 389.0226; found 388.9763; m/z [L1CuII(EtOH)]+Calcd. for [CuC32H18N3O3]+ 435.0644; found 435.0132 (Fig. S4). Anal.Calc. for CuC21H14N3O6SF3: C, 45.29; H, 2.53; N, 7.54. Found: C, 45.06;H, 2.74; N, 8.09. X-ray quality crystals in the form of teal blocks weregrown upon slow diffusion of anhydrous THF into a concentrated solutionof the compound in EtOH at room temperature.

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Elwell, Courtney E.; Neisen, Benjamin D.; Tolman, William B.; Inorganica Chimica Acta; vol. 485; (2019); p. 131 – 139;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The origin of a common compound about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

578743-87-0, General procedure: To a stirred solution of imidazolium salts (0.045 mmol), NaOtBu (4.3 mg, 0.045 mmol) and CuCl (4.5mg, 0.045 mmol) was added THF (0.5 mL, 0.09 M) at 30 oC under argon atmosphere. After stirring for 2 h, the solution of K+[CF3B(OMe)3]- (63.5 mg, 0.3 mmol, 6.0 equiv) in DMF (0.5 mL) was added dropwise. Then the mixture was kept stirring at 30 oC for 10 h. After that, the reaction was quenched with water. Aqueous layer was extracted with EtOAc (15 mL x 3), and the combined organic layers was washed with brine, dried over Na2SO4 and concentrated under reduced pressure. Then the crude product was purified by column chromatography on silica gel to give the imidazolinone 3b-d.

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

Reference£º
Article; Zeng, Wei; Wang, Enyu; Qiu, Rui; Sohail, Muhammad; Wu, Shaoxiang; Chen, Fu-Xue; Journal of Organometallic Chemistry; vol. 743; (2013); p. 44 – 48;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

With the rapid development of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,578743-87-0

In a dry double-mouth bottle to place Pt – 2 (0.0594 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.047 g, and the yield is 40%.

With the rapid development of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”