Some tips on Copper(I) bromide

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 7787-70-4, Copper(I) bromide. This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.7787-70-4

7787-70-4, Complex 2 was obtained by a similar method as described for 1 using copper(I) bromide (0.032 g,0.22 mmol) in place of copper(I) iodide. Colorless crystals of 2 were obtained (Yield: 0.191 g, 90.3%). 1HNMR (400 M, CDCl3) delta: 7.51-7.36 (m, 22H, m,p-Ph + H3,H4-PC6H4-), 7.33-7.27 (m, 4H, H5,H6-PC6H4-),7.12-7.00 (m, 12H, o-Ph). 13C NMR (100 M, CDCl3) delta: 147.87, 147.67, 140.24, 140.16, 134.31, 134.17, 133.45,131.80, 131.07, 130.71, 130.14, 129.90, 128.93, 128.69, 127.93, 127.26 (Ar-C). 31P NMR (240 M, CDCl3) delta:-9.70 (s). Anal. Calcd for C48H38Cu2Br2P2: C, 59.83; H, 3.97. Found: C, 59.88; H, 3.97. MS (MALDI-TOF): m/zCalcd for [M-2Br-Cu + C24H19P]+, 739.1745, found 739.1747.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Qi, Lei; Li, Qian; Hong, Xiao; Liu, Li; Zhong, Xin-Xin; Chen, Qiao; Li, Fa-Bao; Liu, Qian; Qin, Hai-Mei; Wong, Wai-Yeung; Journal of Coordination Chemistry; vol. 69; 24; (2016); p. 3692 – 3702;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

With the complex challenges of chemical substances, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO179,mainly used in chemical industry, its synthesis route is as follows.,14172-91-9

The copper tetraphenyl porphyrinssynthesised as above was converted into itsoctabromo derivative by the addition of liquidbromine (1.2ml)in chloroform(50ml) to a solution ofCu(TPP)(0.50g) in chloroform:carbon tetrachloride(1:1 V/V) (500ml) in a conical flask. Bromine wasadded dropwise and slowly over a period of halfhour, at room temperature. The contents were stirredfor 4hours, followed by addition of pyridine 2.4mlin 40ml mixture of CHCl3:CCl4in 1:1 ratio. Theaddition took about half hour and stirring continuedfor 12hours. The bromination process wasmonitored by UV-visible spectroscopy to ensurecomplete bromination. The excess bromine was destroyed byaddition of sodium metasulphite (200ml 20% aq.solution) to the system. The organic layer wasseparated using a separating funnel and the solutionwas dried over anhydrous sodium sulphate. Theevaporation of solvent under reduced pressureresulted a green solid of copper octabromoteraphenylporphyrin [Cu(OBTPP)]. The solid was dissolved inminimum amount of chloroform and columnchromatography was done. The first fraction comingout of the column was collected. The removal of solventyielded copper octabromotetraphenyl porphyrin(3)in purified form, yield (75%).

With the complex challenges of chemical substances, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

Reference£º
Article; Raikwar, Kalpana; Oriental Journal of Chemistry; vol. 31; 2; (2015); p. 1195 – 1200;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of Copper(I) bromide

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

Example 1 2-(Carboxy-5-nitro-phenyl)malonic acid dimethyl ester A solution of 2-chloro-4-nitrobenzoic acid (75 g, 372 mmol) in dimethyl malonate (900 mL, 20 equivalents) was degassed with nitrogen for 15 min. Copper (I) bromide (5.4 g, 37 mmol) was added in one portion. Sodium methoxide (48.3 g, 894 mmol) was added in one portion to the solution while stirring and the contents exothermed to 48 C. Fifteen minutes later, the contents were heated to 70 C. for 24 hrs. The reaction was complete by nmr. Water (900 mL) was added to the cooled reaction followed by hexanes (900 mL). The aqueous layer was separated, toluene (900 mL) added, the solution filtered through Celite, and the aqueous layer separated. Fresh toluene (1800 mL) was added to the aqueous layer and the biphasic mixture acidified with 6 N aqueous HCl (90 mL). A white precipitate formed and the contents were stirred for 18 hrs. The product was filtered off and dried to give a white solid, 78.1 g (70%, mp 153 C.). IR 2923, 2853, 1750, 1728, 1705, 1458, 1376, 1352, 1305, 1261 cm-1.1 H NMR (CD3)2 SO delta8.37(d,J=2 Hz, 1H), 8.30 (d,J=1 Hz,2H), 5.82(s, 1H),3.83 (s,6H).13 C NMR (CD3)2 SOdelta168.0, 167.3, 149.4, 137.1, 135.8, 132.5, 125.4, 123.7, 54.5, 53.4.Anal. Calcd for C11 H10 NO8:C,48.49; H,3.73; N, 4.71. Found:C, 48.27; H,3.72; N, 4.76.

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Patent; Pfizer Inc; US5968950; (1999); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,578743-87-0

General procedure: To an oven-dried screwed 20 mL vial were added (NHC)CuCl (c7 or c8, 0.2 mmol) suspended in dry THF (3 mL); in another vial, [tBu3PN]Li (1b, 42.3 mg, 0.95 eq.) was also dissolved in dry THF (3 mL), then the vial was put into glove-box fridge (-35 C) for one hour. Then the cold mixture was dropped into the (NHC)CuCl/THF suspension slowly under stirring and the suspension was turned into clear solution as the lithium salt added. After addition, the reaction mixture was kept at room temperature in glove box for 13 hours. After the reaction was completed, the volatile was removed under vacuum and dry hexane or pentane (7 mL) was added into the formed oily residue. The suspension obtained was kept stirring for another 15 mins at room temperature, then filtered through a short pad of neutral celite to get rid of precipitate. The filtrate was cooled down in the fridge (-35 C) for 3-4 hours to remove the unreacted lithium salt 1b further. Repeated once again to get the clear hexane or pentane filtrate. The filtrate was evaporated until white crystallized solid was formed, which is the catalytic active species (3 or 4). IPrCuCl (c7, 97 mg, 0.2 mmol); Obtain IPrCuNPtBu3 (3, 99 mg, 78%) as Colorless Solid; 1H NMR (C6D6, 600 MHz) delta 7.26-7.21 (br, m, 4H, m-ArH), 7.17-7.14 (br, m, 2H, p-ArH), 6.40 (s, 2H, NCH=), 2.83 (sep, 4H, J = 6.6 Hz, CH(CH3)2), 1.61 (d, 12H, J = 6.6 Hz, CH(CH3)2), 1.37 (d, 27H, J(PH) = 10.8 Hz, P(C(CH3)3)3), 1.20 (d, 12H, J = 6.6 Hz, CH(CH3)2); 13C NMR (C6D6, 151 MHz) delta 146.18, 136.50, 130.42, 128.68, 124.42, 122.05, 40.78, 40.49, 31.01, 29.33, 25.04, 24.42; 31P NMR (C6D6, 243 MHz) delta 26.35 (s); Elemental analysis calcd for [C39H63CuN3P+0.67 THF]: C, 69.84; H, 9.61; N, 5.86. Found: C, 69.48; H, 9.90; N, 6.19.

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Bai, Tao; Yang, Yanhui; Han, Chao; Tetrahedron Letters; vol. 58; 15; (2017); p. 1523 – 1527;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

Copper(II) triflate (50.0 mg, 0.14 mmol) was dissolved in methanol (3 ml) and the ligand (42.8 mg, 0.07 mmol) added. The reaction mixture was stirred at r. t. for 16 h. Then the mixture was evaporated to dryness and the resulting green solid recrystallised from dichloromethane and pentane. 5: 23.6 mg, 34.0%. C42H37N5O8S2F6Cu¡¤2CH2Cl2: Anal. Calc. C, 43.16; H, 3.30; N, 5.59. Found: C, 42.72; H, 3.71; N, 5.87%. HR-MS: C40H36N5O263Cu Calc. 681.2239. Found: 681.2202 (100.0), C40H36N5O265Cu Calc. 683.2147. Found 683.2105 (65.1). IR: nunu [cm-1]=3066, 2962, 2870, 1657, 1598, 1535, 1484, 1454, 1265, 1172, 1109, 1032, 953, 756, 639. Magnetic susceptibility in CD2Cl2 (295 K): mueff=1.78muB.

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Continuously updated synthesis method about Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

Synthesis of [(SIMes)CuBr]. In an oven-dried vial, copper(I) bromide (0.522 g, 3.63 mmol), SIMes.HCl (0.86 g, 2.52 mmol) and sodium tert-butoxide (0.243 g, 2.52 mmol) were loaded inside a glovebox and stirred in dry THF (18 mL) overnight at room temperature outside of the glovebox. After filtration of the reaction mixture through a plug of Celite, the filtrate was mixed with hexane to form a precipitate. A second filtration afforded 0.808 g (71% yield) of the title complex as an off-white solid.Spectroscopic and analytical data for [(SIMes)CuBr]: 1H NMR (300 MHz, [D6]acetone): delta=7.01 (s, 4H, HAr), 4.16 (s, 4H, NCH2), 2.37 (s, 12H, ArCH3), 2.29 (s, 6H, ArCH3); 13C NMR (75 MHz, CDCl3): delta=202.6 (C, NCN), 138.5 (C, CAr), 135.3 (CH, CAr), 135.0 (C, CAr), 129.7 (CH, CAr), 51.0 (CH2, NCH2), 21.0 (CH3, ArCH3), 18.0 (CH3, ArCH3); Elemental analysis calcd for C21H26BrCuN2 (449.89): C, 56.06; H, 5.83; N, 6.23. Found: C, 55.98; H, 5.64; N, 6.21%.

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Reference£º
Patent; Institut Catala d’Investigacio Quimica; Institucio Catalana de Recerca i Estudis Avancats; US2009/69569; (2009); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Sources of common compounds: Copper(II) acetate hydrate

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.6046-93-1, Copper(II) acetate hydrate it is a common compound, a new synthetic route is introduced below., 6046-93-1

Bis(8-quinolinolato)copper(II) was synthesized as follows. In a typical synthesis, 1.45 g (10 mmol) of 8-quinolinol ligand was dissolved in 20 ml THF, followed by the dropwise addition of a solution of 1.0 g (5 mmol) Cu(CH3COO)2*H2O in 10ml THF at reflux temperature. The resultant solution was stirred and refluxed for 2 h. After cooling, the solid product was separated by filtration and denoted as CuQ2.

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

Reference£º
Article; Hu, Jing; Zou, Yongcun; Liu, Jing; Sun, Jian; Yang, Xiaoyuan; Kan, Qiubin; Guan, Jingqi; Research on Chemical Intermediates; vol. 41; 8; (2015); p. 5703 – 5712;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

With the synthetic route has been constantly updated, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,belong copper-catalyst compound

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride it is a common compound, a new synthetic route is introduced below., 578743-87-0

In a dry double-mouth bottle to place Ir – 1 (0.0695 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.064 g, and the yield is 50%.

With the synthetic route has been constantly updated, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,belong copper-catalyst compound

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) trifluoromethanesulfonate

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of Cu(OTf )2 (0.089 g, 0.25 mmol) in 1 mL of CH3CN was added to a stirred solution of 2-pina (0.050 g, 0.25 mmol) in 1 mL of CH3CN. The blue suspension was stirred for 1.5 h and the solvent was removed under reduced pressure. The resulting blue solid was washed with Et2O (5 mL ¡Á 3). Dissolving the product in DMF and vapor diffusion of Et2O into the blue solution at room temperature led to green crystals suitable for X-ray crystallographic characterization (0.095 g, 54% yield). Anal. Calcd for C19H23N5O9F6S2Cu: C, 32.28; H, 3.28; N, 9.90. Found: C, 31.96; H, 3.03; N, 10.15. FT-IR (cm-1): 1644, 1619, 1546, 1457, 1431, 1386, 1369, 1243, 1223, 1147, 1106, 1028, 862, 759, 698, 667, 634, 572, 516, 418., 34946-82-2

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Article; McMoran, Ethan P.; Mugenzi, Clement; Fournier, Kyle; Draganjac, Mark; Tony, Donavon; Jeong, Kwangkook; Powell, Douglas R.; Yang, Lei; Journal of Coordination Chemistry; vol. 69; 3; (2016); p. 375 – 388;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Research on new synthetic routes about Copper(I) bromide

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

7787-70-4, Copper bromide (2.223 g, 10.00 mmols) was added to 2-pyridone (1.936 g, 20.38 mmols) dissolved in 10 mL THF, 3 mL of water, and 0.859 g (10.6 mmol) concentrated HBr (?9 M). Dark crystals formed in solution after one week. The product was isolated by vacuum filtration, washed with cold THF, and air-dried to yield 3.41 g (82%) of brown crystals. Single crystals (brown prisms) were obtained by recrystallization in THF/water (10:3). IR (KBr): 3241m, 3150m, 3082m, 2936m (nu N-H), 1638s/1621s (C=O) 1586s, 1536s, 1466m, 1374s, 1277m, 1216m, 1156m, 1091m, 997m, 859m, 775s, 718m, 593m, 539m, 511m cm-1. Anal. Calc. for C20H20N4O4Cu2Br4: C, 29.04; H, 2.44; N, 6.77. Found: C, 28.79; H, 1.76; N, 6.60%.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Shortsleeves, Kelley C.; Turnbull, Mark M.; Seith, Christopher B.; Tripodakis, Emilia N.; Xiao, Fan; Landee, Christopher P.; Dawe, Louise N.; Garrett, David; De Delgado, Graciela Diaz; Foxman, Bruce M.; Polyhedron; vol. 64; (2013); p. 110 – 121;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”