Share a compound : 7787-70-4

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.

General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1 mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martn, Enrique; Lemus, Luis; Costamagna, Juan; Faras, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2015); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), 14172-91-9

14172-91-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), cas is 14172-91-9,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

(a) N-Bromosuccinimide (0.105 g, 0.592 mmol) was added with stirring to a solution of 0.02 g (0.0296 mmol) of complex 5 in a mixture of 10 mL of chloroform and 1 mL of DMF, the mixture was stirred at ambient temperature for 8 h. The reaction mixture was concentrated to minimal volume, 10 mL of DMF, water, and solid NaCl were added, the precipitate was separated by filtration, washed with water, acetonitrile, dried, chromatographed on aluminum oxide using chloroform as an eluent, and reprecipitated from ethanol. Yield 0.026 g (0.0199 mmol), 68%. MS (m/z (Irel, %)): 1306.6 (98) [M]+; for C44H20N4Br8Cu calcd.: 1307.5. IR (nu, cm-1): 2925 s, 2853 m nu(C-H, Ph), 1680 w, 1488 m nu(C=C, Ph), 1467 w, 1444 w nu(C=N), 1366 w, 1351 w nu(C-N), 1175 m, 1145 w, 1108 w delta(C-H, Ph), 1024 s nu(C-C), 924 m, 858 m gamma(C-H, pyrrole ring), 756 m, 734 m, 695 m gamma(C-H, Ph). For C44H20N4Br8Cu anal. calcd. (%): C, 40.42; N, 4.29; H, 1.54; Br, 48.89. Found (%): C, 40.15; N, 4.16; H, 1.59; Br, 48.71.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II), 14172-91-9

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

L (0.0424g, 0 . 2mmol), cu (CF 3 SO 3) 2 (0.0691g, 0 . 2mmol), H 2 O (6 ml) CH 3 CN (4 ml), water heat 100 o C drop to the room temperature slowly after three days. After operates the cauldron a suitable for X-ray crystal diffraction analysis of the yellow rod-like crystal. Yield: 35% (calculated based on L).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104447804; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

578743-87-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,578743-87-0 ,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, and cas is 578743-87-0, its synthesis route is as follows.

1) 0.2 mmol (NHC) CuCl was dissolved in 3 ml of dry THF in a 20 ml dry glass bottle to form a suspension,The glass was then placed in a glove box refrigerator and frozen at -35 C for 1 h;2) 42.3 mg (0.95 eq) [tBu3PN] Li was dissolved in 3 ml of dry THF in another 20 ml dry glass vial,And then put the glass bottle into the glove box refrigerator,Frozen at -35 C for 1 h;3) Slowly drop the [tBu3PN] Li solution of 2) in a cold (NHC) CuCl suspension in 1) with stirring,After completion of the dropwise addition, the mixture was stirred in a glove box at room temperature for 13 h;4) After completion of the reaction, the solvent (THF) was dried in vacuo to give an oily slag,Followed by the addition of 7 ml of n-pentane or n-hexane to give a suspension,And stirred at room temperature for 15 min,And then through the neutral diatomite short pad filter to remove insoluble matter,The filtrate was placed in a refrigerator and cooled at -35 C for 3-4 h,And then filtered through neutral diatomaceous earth,And then frozen the filtrate,Repeated several times to obtain a clear n-pentane or n-hexane solution,The clear solution was dried to give a white crystalline solid,Ie complex A or B.

578743-87-0, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,578743-87-0 ,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Shan, Xida; Bai, Tao; Yang, Yanhui; (31 pag.)CN106243132; (2016); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

The chemical industry reduces the impact on the environment during synthesis,13395-16-9,Bis(acetylacetone)copper,I believe this compound will play a more active role in future production and life.

13395-16-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Bis(acetylacetone)copper, cas is 13395-16-9,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: In a typical synthesis of Cu40Ag60, 0.45mmol Cu(acac)2 and 0.35 Ag (ac) was mixed with 3mL of OAm, 1 mL of OAc and 11mL of ODE. All synthesis was conducted in a four-necked glass reactor allowing the precise temperature control and inert gas atmosphere under dark conditions. Firstly, the mixture was heated to 60C and kept at this temperature for 10min. Then, the mixture was heated to 180C and kept at this temperature for 30min before it was cooled down to room temperature. After cooling, the resultant reaction mixture was collected with hexane (2mL) and the NPs were separated by centrifugation (8500rpm, 12min) after adding isopropanol (40mL). To further purify the yielded CuAg NPs, the product was centrifuged (8500rpm, 12min) one more time with ethanol (40mL). Finally, the remaining product was dispersed in hexane (10mL) for further use. By using the same recipe and varying metal precursor amounts, two different compositions of CuAg NPs were synthesized. Reductive mixing of 0.3mmol Cu(acac)2 and 0.5 Ag(ac) resulted in Cu30Ag70 NPs and mixing 0.6mmol Cu(acac)2 with 0.4 Ag (ac) led to Cu60Ag40. Synthesis of Ag NPs was conducted with the same recipe without using Cu precursor.

The chemical industry reduces the impact on the environment during synthesis,13395-16-9,Bis(acetylacetone)copper,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Balkan, Timucin; Kuecuekkececi, Hueseyin; Kaya, Sarp; Metin, Oender; Zarenezhad, Hamaneh; Journal of Alloys and Compounds; vol. 831; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 578743-87-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

578743-87-0, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

In a dry double-mouth bottle to place Ir – 1 (0.0695 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.064 g, and the yield is 50%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, 578743-87-0

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 13395-16-9

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 13395-16-9, Bis(acetylacetone)copper

13395-16-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Bis(acetylacetone)copper, cas is 13395-16-9,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The monodisperse CuPd alloy NPs with composition controlwere synthesized by using a modified version of our estab-lished recipe for the CoPd alloy NPs [14]. In a typical synthesis of Cu75Pd25NPs, copper(II) acetylacetonate (0.35 mmol, 90 mg)and palladium(II) acetylacetonate (0.1 mmol, 31 mg) were dis-solved in 3 mL of OAm in a 10 mL of glass vial. In a four-necked glass reactor that allows to study under inert atmosphere,200 mg of MB was dissolved in 3 mL of OAm and 7 mL of 1-octadecene at 80C under magnetic stirring. Next, the metal precursor mixture was quickly injected into the reactor under argon environment. The reaction was then proceed for 1 h before cooled down to room temperature. Then, the colloidal NPs mixture was transferred into two separate centrifuge tubeand acetone/ethanol (v/v = 7/3) was added into the tubes. TheNP product was separated by centrifugation at 8500 rpm for10 min.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 13395-16-9, Bis(acetylacetone)copper

Reference£º
Article; Guengoermez, Kuebra; Metin, Oender; Applied Catalysis A: General; vol. 494; (2015); p. 22 – 28;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 6046-93-1

6046-93-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,6046-93-1 ,Copper(II) acetate hydrate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) acetate hydrate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 6046-93-1, its synthesis route is as follows.

General procedure: In a 250mL distillation flask, 5,10,15,20-tetraphenylporphyrin (H2TPP) (0.50g, 0.81mmol) and NaOAc (0.30g, 3.6mmol) was stirred in 75mL of chlorobenzene and 50mL of DMF. After the addition of two equivalents of metal acetate, a Soxhlet extractor with a cellulose filter thimble filled with ?3g of K2CO3 was attached to the distillation flask. The assembly was completed with a condenser on the top of the extractor; and then the mixture was heated to reflux at 150C overnight. The reaction extent was monitored by TLC or UV-Vis until all the H2TPP was consumed. After the reaction was compete, the solvent was removed under vacuum. The remaining solid was dissolved in 150mL of chloroform, and washed with water (50mL¡Á3). The organic layer was further washed with a saturated sodium bicarbonate solution (50mL¡Á3), and then dried over K2SO4. After removal of the solvent in vacuo, the solid was recrystallized from chloroform/heptane.

6046-93-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,6046-93-1 ,Copper(II) acetate hydrate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Yao, Shu A.; Hansen, Christopher B.; Berry, John F.; Polyhedron; vol. 58; (2013); p. 2 – 6;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(I) bromide

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the copper-catalyst compound, Copper(I) bromide, cas is 7787-70-4 its synthesis route is as follows.

Copper bromide (0.079 g, 0.55 mmol) was added to 30 mL of ppdq (0.200 g, 0.55 mmol) In a solution of CH2Cl2, the mixture was stirred at room temperature to form a red suspension, the reaction mixture was filtered, and the solvent was removed under reduced pressure. A red powder was obtained which was recrystallized from CH2Cl2 to give red crystals: 0.238 g, 85.3%.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Hubei University; Liu Li; Guo Bangke; (13 pag.)CN109970769; (2019); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Dichlorotris(triphenylphosphino)ruthenium (II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

0.118 g (0.65 mmol) of Cu(OAc)2 was added to a solution of 0.04 g (0.065 mmol)of 2 in 50 mL of DMF. The reaction mixture was refluxed during 2 min and cooled to ambient; five-fold excess of water and NaCl was added. The precipitate was filtered off, washed with water, and dried. Yield 0.04 g (0.059 mmol) of CuTPP.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”