Reference of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 1111-67-7, molcular formula is CCuNS, introducing its new discovery.
Synthesis, crystal structure and fluorescent property of two-dimensional Cu(I) coordination polymers with cyanide, thiocyanate and triazole bridges
Hydrothermal reaction of CuCN, K3[Fe(CN)6] with 4-(6-amino-2-pyridyl)-1,2,4-triazole (apt) afforded a coordination polymer [Cu7(CN)7(apt)2]n (1), while solvothermal reaction of CuSCN with apt in acetonitrile afforded a coordination polymer [Cu2(SCN)2(apt)]n (2). Complex 1 shows two-dimensional polymeric network with large hexagonal channels constructing by CuCN chains and tridentate apt ligands. Complex 2 shows two-dimensional polymeric framework assembled by ladder-like [Cu(SCN)]n chains and bidentate apt ligands, in which thiocyanate acts as a tridentate bridging ligand. Both polymers are thermal stable and strong fluorescent in the solid state.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”