Properties and Exciting Facts About Cuprous thiocyanate

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Chemical research careers are more diverse than they might first appear, as there are many different reasons to conduct research and many possible environments. category: copper-catalyst. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.

The preparation and structures of the exocyclic coordination-based supramolecular complexes of a 14-membered dibenzo-O2S 2-macrocycle, L, with thiaphilic soft metal ions Cu(i), Hg(ii) and Pd(ii) are reported. The X-ray crystal structures of the eight complexes have been determined, and a range of the less common structural types, including mono- and multinuclear species with discrete and infinite forms were obtained. L reacts with copper(i) halides and afforded isostructural complexes of type [(Cu2X2)L]n (1: X = Cl, 2: X = Br) adopting a two-dimensional (2-D) polymeric structure linked by square-type Cu 2X2 clusters, while copper(i) iodide gave a yellow emissive complex {[(Cu4I4)L2]·2.5H 2O}n (3) whose crystal structure was not available. Treatment of L with copper(i) thiocyanate gave an infinite 2-D coordination network [CuLSCN]n (4) in which copper atoms are linked by SCN – forming a 1-D backbone, then further cross-linked by Lvia Cu-S bonds resulting in a grid-type layered structure. Reactions of L with HgX 2 (X = Br and I) resulted in the formation of an interesting “ivy-leaves” shaped complex [HgLBr2]n (5) with a syndiotactic arrangement and a single-stranded complex [(Hg2I 4)L]n (6), respectively, adopting an infinite 1-D structure. Unlike the copper(i) and mercury(ii) complexes with the infinite structures, reactions of L with Pd(NO3)2 gave a 1:1 (metal-to-ligand) dinitrato complex cis-[PdL(NO3)2] (7) and a 1:2 bis(macrocycle) complex cis-[PdL2](NO3) 2 (8) in a discrete form depending on the molar ratio of the reactants. A straightforward one-pot reaction of Pd(NO3)2 with two equivalents of L also resulted in the isolation of the bis(macrocycle) complex 8. The comparative NMR and ESI-mass studies for the palladium(ii) complexes were also carried out. The results are discussed in terms of the exo-coordination modes as well as the anion coordination.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”