Downstream synthetic route of 14172-91-9

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14172-91-9,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),as a common compound, the synthetic route is as follows.

Copper(II) meso-tetra(4-carboxyphenyl)porphine (8.8 mg, 0.01 mmol) and fumaric acid (9.9 mg, 0.06 mmol) were dissolved in DMF (5 mL) in a small capped vial, sonicated to ensure homogeneity and heated to 80 C for 72 h, followed by 72 h of evaporation in a crystallizing dish, yielding diffraction quality fibrous red crystals. numax/cm-1: 3403 (C(sp2)H), 2770 (OH), 1390-1280 (C=O). 1600-1450 (CC), 1320 (CO), 1380 (CN), 1006 (CuTCPP), 790-600 (CH). Found: C, 59.91; H, 5.17; N, 9.54; O, 18.40. Calc. for C66H68CuN10O14: C, 61.50; H, 5.32; N, 10.87; O, 17.38.

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Fidalgo-Marijuan, Arkaitz; Amayuelas, Eder; Barandika, Gotzone; Bazan, Begona; Urtiaga, Miren Karmele; Arriortua, Maria Isabel; Molecules; vol. 20; 4; (2015); p. 6683 – 6699;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

New learning discoveries about 14172-91-9

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

14172-91-9, 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Under the protection of nitrogen, 0.14 mmol of the corresponding 5,10,15,20-tetrakis(4-R-phenyl)porphyrin copper(II)complex was dissolved in 16 ml of CHCl3, to which 0.75 ml of DMFwas added with magnetic stirring. The solution was cooled to 0 Cin an ice bath, and then 0.56 ml of phosphoryl chloride (POCl3) wasslowly added within 20 min. The ice bath was removed and stirringwas continued at room temperature for 1 h, and the solution wascontinuously stirred and heated at 70 C for 24 h. Then 3.606 g ofNaAc and 14.4 ml of distilled water were added in an ice bath andstirring for another 1 h. After separation of the aqueous layer, theorganic layer was washed with 10 ml of distilled water for 3 times,then dried over anhydrous magnesium sulfate and filtered. Thesolvent was removed by rotary evaporation at low temperature toafford a crude product. The crude product was dissolved indichloromethane and subjected to column chromatography overneutral alumina with dichloromethane/petroleum ether (v/v 3:1)as the eluent. The third coloured bandwas collected and the solventwas removed by rotary evaporation to afford a purple powder.

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Wu, Zhen-Yi; Yang, Sheng-Yan; Journal of Molecular Structure; vol. 1188; (2019); p. 244 – 254;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”