The important role of 142-71-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The reactions of complexing between porphyrins and copper acetate were studied by means of spectrophotometry in the range of 293-318 K. The change in temperature during the experiment did not exceed¡À0.1 K.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Pukhovskaya; Nam, Dao Tkhe; Fien, Chan Ding; Domanina; Ivanova, Yu. B.; Semeikin; Russian Journal of Physical Chemistry; vol. 91; 9; (2017); p. 1692 – 1702; Zh. Fiz. Khim.; vol. 91; 9; (2017); p. 1508 – 1519,12;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

General procedure: HLBAP (0.525 g, 1 mmol) and triethylamine (0.28 mL, 2 mmol) were dissolved in a 2:1 acetonitrile/dichloromethane mixture (45 ml), and then copper salt with the corresponding anion (1 mmol) was added. The reaction mixture was stirred for 4 h at room temperature in the presence of air. X-ray quality red brown crystals were grown from a 1:1 solvent mixtureof dichloromethane/methanol., 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Safaei, Elham; Bahrami, Hadiseh; Wojtczak, Andrzej; Alavi, Saman; Jagli?i?, Zvonko; Polyhedron; vol. 122; (2017); p. 219 – 227;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(I) bromide

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 7787-70-4, Copper(I) bromide. This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.7787-70-4

7787-70-4, General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martin, Enrique; Lemus, Luis; Costamagna, Juan; Farias, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2014); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

7787-70-4 is used more and more widely, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

7787-70-4 is used more and more widely, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martin, Enrique; Lemus, Luis; Costamagna, Juan; Farias, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2014); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Continuously updated synthesis method about Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

General procedure: An acetonitrile solution (5 mL) of cuprous chloride (0.008 g,0.084 mmol) was introduced dropwise to a solution of 1(0.040 g, 0.084 mmol) in dichloromethane (5 mL). The reactionwas allowed to stir at room temperature for 6 h. Afterthat, solvent was evaporated under vacuum to give microcrystallineproduct of 5 as a white solid.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Kumar, Saurabh; Balakrishna, Maravanji S; Journal of Chemical Sciences; vol. 129; 8; (2017); p. 1115 – 1120;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Research on new synthetic routes about Copper(I) bromide

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

General procedure: A suspension of copper(I) iodide (0.190 g, 1.0 mmol) and dppc (0.534 g, 1.0 mmol) in20 mL of CH2Cl2 was stirred for 6 h at room temperature to form a light-yellow precipitate.The precipitate was filtered off and purified by recrystallization from CH2Cl2/ethanolto give yellow crystals (Yield: 0.618 g, 85.3%).

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Article; Li, Qian; Wei, Qiong; Xie, Pei; Liu, Li; Zhong, Xin-Xin; Li, Fa-Bao; Zhu, Nian-Yong; Wong, Wai-Yeung; Chan, Wesley Ting-Kwok; Qin, Hai-Mei; Alharbi, Njud S.; Journal of Coordination Chemistry; vol. 71; 24; (2018); p. 4072 – 4085;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Research on new synthetic routes about Copper(I) bromide

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

7787-70-4, Copper bromide (2.223 g, 10.00 mmols) was added to 2-pyridone (1.936 g, 20.38 mmols) dissolved in 10 mL THF, 3 mL of water, and 0.859 g (10.6 mmol) concentrated HBr (?9 M). Dark crystals formed in solution after one week. The product was isolated by vacuum filtration, washed with cold THF, and air-dried to yield 3.41 g (82%) of brown crystals. Single crystals (brown prisms) were obtained by recrystallization in THF/water (10:3). IR (KBr): 3241m, 3150m, 3082m, 2936m (nu N-H), 1638s/1621s (C=O) 1586s, 1536s, 1466m, 1374s, 1277m, 1216m, 1156m, 1091m, 997m, 859m, 775s, 718m, 593m, 539m, 511m cm-1. Anal. Calc. for C20H20N4O4Cu2Br4: C, 29.04; H, 2.44; N, 6.77. Found: C, 28.79; H, 1.76; N, 6.60%.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Shortsleeves, Kelley C.; Turnbull, Mark M.; Seith, Christopher B.; Tripodakis, Emilia N.; Xiao, Fan; Landee, Christopher P.; Dawe, Louise N.; Garrett, David; De Delgado, Graciela Diaz; Foxman, Bruce M.; Polyhedron; vol. 64; (2013); p. 110 – 121;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Sources of common compounds: Copper(II) acetate hydrate

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.6046-93-1, Copper(II) acetate hydrate it is a common compound, a new synthetic route is introduced below., 6046-93-1

Bis(8-quinolinolato)copper(II) was synthesized as follows. In a typical synthesis, 1.45 g (10 mmol) of 8-quinolinol ligand was dissolved in 20 ml THF, followed by the dropwise addition of a solution of 1.0 g (5 mmol) Cu(CH3COO)2*H2O in 10ml THF at reflux temperature. The resultant solution was stirred and refluxed for 2 h. After cooling, the solid product was separated by filtration and denoted as CuQ2.

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

Reference£º
Article; Hu, Jing; Zou, Yongcun; Liu, Jing; Sun, Jian; Yang, Xiaoyuan; Kan, Qiubin; Guan, Jingqi; Research on Chemical Intermediates; vol. 41; 8; (2015); p. 5703 – 5712;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Continuously updated synthesis method about Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

Synthesis of [(SIMes)CuBr]. In an oven-dried vial, copper(I) bromide (0.522 g, 3.63 mmol), SIMes.HCl (0.86 g, 2.52 mmol) and sodium tert-butoxide (0.243 g, 2.52 mmol) were loaded inside a glovebox and stirred in dry THF (18 mL) overnight at room temperature outside of the glovebox. After filtration of the reaction mixture through a plug of Celite, the filtrate was mixed with hexane to form a precipitate. A second filtration afforded 0.808 g (71% yield) of the title complex as an off-white solid.Spectroscopic and analytical data for [(SIMes)CuBr]: 1H NMR (300 MHz, [D6]acetone): delta=7.01 (s, 4H, HAr), 4.16 (s, 4H, NCH2), 2.37 (s, 12H, ArCH3), 2.29 (s, 6H, ArCH3); 13C NMR (75 MHz, CDCl3): delta=202.6 (C, NCN), 138.5 (C, CAr), 135.3 (CH, CAr), 135.0 (C, CAr), 129.7 (CH, CAr), 51.0 (CH2, NCH2), 21.0 (CH3, ArCH3), 18.0 (CH3, ArCH3); Elemental analysis calcd for C21H26BrCuN2 (449.89): C, 56.06; H, 5.83; N, 6.23. Found: C, 55.98; H, 5.64; N, 6.21%.

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Reference£º
Patent; Institut Catala d’Investigacio Quimica; Institucio Catalana de Recerca i Estudis Avancats; US2009/69569; (2009); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of Copper(I) bromide

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

Example 1 2-(Carboxy-5-nitro-phenyl)malonic acid dimethyl ester A solution of 2-chloro-4-nitrobenzoic acid (75 g, 372 mmol) in dimethyl malonate (900 mL, 20 equivalents) was degassed with nitrogen for 15 min. Copper (I) bromide (5.4 g, 37 mmol) was added in one portion. Sodium methoxide (48.3 g, 894 mmol) was added in one portion to the solution while stirring and the contents exothermed to 48 C. Fifteen minutes later, the contents were heated to 70 C. for 24 hrs. The reaction was complete by nmr. Water (900 mL) was added to the cooled reaction followed by hexanes (900 mL). The aqueous layer was separated, toluene (900 mL) added, the solution filtered through Celite, and the aqueous layer separated. Fresh toluene (1800 mL) was added to the aqueous layer and the biphasic mixture acidified with 6 N aqueous HCl (90 mL). A white precipitate formed and the contents were stirred for 18 hrs. The product was filtered off and dried to give a white solid, 78.1 g (70%, mp 153 C.). IR 2923, 2853, 1750, 1728, 1705, 1458, 1376, 1352, 1305, 1261 cm-1.1 H NMR (CD3)2 SO delta8.37(d,J=2 Hz, 1H), 8.30 (d,J=1 Hz,2H), 5.82(s, 1H),3.83 (s,6H).13 C NMR (CD3)2 SOdelta168.0, 167.3, 149.4, 137.1, 135.8, 132.5, 125.4, 123.7, 54.5, 53.4.Anal. Calcd for C11 H10 NO8:C,48.49; H,3.73; N, 4.71. Found:C, 48.27; H,3.72; N, 4.76.

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Patent; Pfizer Inc; US5968950; (1999); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”