Research on new synthetic routes about Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

CuI (0.190 g, 1 mmol) was dissolved in acetonitrile (6 ml)at room temperature, followed by the addition of a solution of Hdpt (0.112 g, 0.5 mmol) in acetonitrile (8 ml) with vigorous magnetic stirring in a 25 ml Parr Teflon-lined stainless steel vessel. The mixture was heated for 3 days at 150 C and then cooled to room temperature at a rate of10 C/h.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Hu, Sheng; Lin, DianRong; Xie, ZhenMing; Zhou, ChangXia; He, WenXi; Yu, FangYong; Transition Metal Chemistry; vol. 40; 6; (2015); p. 623 – 629;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Discovery of Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

7787-70-4, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route., 7787-70-4

A dry and Ar-flushed Schlenk flask was charged with P(OEt)3 (5.2 mL, 30.0 mmol) in benzene (30 mL). CuBr (4.3 g, 30.0 mmol) was added. After the mixture had stirred at r.t. for 1 h and at 80 C for 1 h, unsolved solid was removed by filtration under Ar atmosphere and solvents were evaporated from the filtrate. The resulted mixture was cooled down to -78 C and was washed with n-hexane (2*). The remained solid was dried under vacuum; this gave CuBr*P(OEt)3. Yield: 6.8 g (73%); a mixture of oil and solid.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Moriya, Kohei; Schwaerzer, Kuno; Karaghiosoff, Konstantin; Knochel, Paul; Synthesis; vol. 48; 19; (2016); p. 3141 – 3154;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Sources of common compounds: Copper(II) acetate hydrate

6046-93-1, 6046-93-1 Copper(II) acetate hydrate 165397, acopper-catalyst compound, is more and more widely used in various fields.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.6046-93-1, Copper(II) acetate hydrate it is a common compound, a new synthetic route is introduced below., 6046-93-1

A mixed solvent of 75 ml of chlorobenzene and 50 ml of N,N-dimethylformamide (DMF) was added to a 250 ml three-neck distillation flask. Add 5,10,15,20-tetraphenylporphyrin (H2TPP) (0.50 g, 0.81 mmol) start stirring, after the solid is dissolved, add an appropriate amount of copper acetate monohydrate (Cu(OAc)2*H2O) (0.324 g 1.62 mmol). Put about 3g of potassium carbonate (K2CO3) in the alkali storage chamber, the mixture in the reaction kettle was heated to 150 C and kept under reflux. The progress of the reaction (UV-Vis) is monitored by thin layer chromatography (TLC) or ultraviolet visible absorption spectroscopy until the complete reaction of H2TPP is completed. The solvent is distilled off under vacuum. The remaining solid was dissolved in 150 ml of chloroform. Wash three times with 50 ml of water each time, then collect these liquids in a static layer. The organic layer was further washed three times with 50 ml of saturated sodium bicarbonate solution. Then dried with potassium sulfate (K2SO4), The solvent is distilled off under vacuum. The remaining solid was recrystallized from chloroform/heptane. A purple crystalline solid product of 0.526 g was obtained in a yield of 96%.

6046-93-1, 6046-93-1 Copper(II) acetate hydrate 165397, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Guangzhou Lvying Environmental Protection Technology Co., Ltd.; Yao Shu; Chen Liangming; Qiao Nasen¡¤wudong; (8 pag.)CN109651381; (2019); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extended knowledge of Copper(I) bromide

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

7787-70-4, General procedure: 0.018g (0.182mmol) of CuCl was added to 0.340g (0.205mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution. After stirring the resultant solution for 1hat RT, the yellowish brown solution formed, which was filtered, and solvent was removed in vacuo. The precipitate was washed with Et2O and extracted with THF, then recrystallized with Et2O/MeOH/THF to give [PPh4]2[2a] (0.250g, 0.143mmol, 79% based on CuCl). Similarly, under the same reaction conditions, using CuBr and CuI, we have isolated a yellowish brown solid of [PPh4]2[2b] (96% based on CuBr) and [PPh4]2[2c] (71% based on CuI), respectively, upon crystallization from Et2O/THF.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Research on new synthetic routes about Copper(I) bromide

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

A mixture of CuBr (28.7mg, 0.2mmol) and dppp (82.5mg, 0.2mmol) with an excess of batho (66.5mg, 0.2mmol) were dissolved in CH2Cl2 (5mL) and CH3OH (5mL) solution, stirred at room temperature for 6h. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature to yield yellow crystalline products. Yield: 80%. Anal. Calc. for C53H50BrCuN2O2P2: C, 66.84; H, 5.29; N, 2.94. Found: C, 66.97; H, 5.15; N, 2.88%. IR (KBr disc, cm-1): 3378s, 3048w, 2858w, 2580w, 1616w, 1556m, 1515m, 1433s, 1414m, 1229m, 1026s, 998w, 767m, 740s, 698vs, 513s, 482m. 1H NMR (600MHz, CDCl3, 298K): delta 7.87-8.98 (d, 6H, batho CH), 7.56-7.68 (m, 10H, batho CH), 7.41-7.24 (m, 20H, dppp CH), 2.91-2.81 (m, 4H, CH2), 2.78-2.63 (m, 2H, CH2); 31P NMR (400MHz, CDCl3, 298K): -12.25, -14.84.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yu, Xiao; Fan, Weiwei; Wang, Guo; Lin, Sen; Li, Zhongfeng; Liu, Min; Yang, Yuping; Xin, Xiulan; Jin, Qionghua; Polyhedron; vol. 157; (2019); p. 301 – 309;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Discovery of Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

7787-70-4, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route., 7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid. (0027) [CuBr(CNXyl)3] (1). Yield 530mg, 99%. Anal. Calc. for C27H27N3BrCu: C, 60.39; H, 5.07; N, 7.83. Found: C, 59.88; H, 4.89; N, 7.70%. HRESI+-MS, m/z: 325.0756 ([M-(XylNC)2]+, calcd 325.0760). IR spectrum in KBr, selected bands, cm-1: 2136 s nu(C?N). 1H NMR in CDCl3, delta: 2.49 (s, 6H, CH3), 7.11 (d, J 7.6Hz, 2H, aryl) 7.23 (d, J 7.6Hz, 1H, aryl). 13C{1H} NMR in CDCl3, delta: 18.95 (CH3), 127.92, 129.33, 135.49 (aryl).

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67416; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(I) bromide

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 7787-70-4

General procedure: 0.022g (0.222mmol) of CuCl was added to 0.180g (0.109mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution at -35C. After stirring the resultant solution for 5min, the yellowish brown solution formed, which was filtered, and the filtrate was concentrated. A solution of Et2O (60mL) was added into the filtrate to precipitate the product at -35C. The precipitate was then washed with Et2O and dried to give [PPh4]2[3a] (0.107g, 0.058mmol, 53% based on [PPh4]2[1]). Similarly, under the same reaction conditions, using CuBr, we have isolated a yellowish brown solid of [PPh4]2[3b] (80% based on [PPh4]2[1]) upon crystallization from Et2O/MeCN.

As the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Continuously updated synthesis method about Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7787-70-4, name is Copper(I) bromide. This compound has unique chemical properties. The synthetic route is as follows. 7787-70-4

A mixture of PLN(37.6 mg, 0.2 mmol) containing CH3ONa (11.8 mg, 0.22 mmol) andCuBr (22 mg, 0.2 mmol) in methanolic solution (10 mL) was refluxed for 2 h, followed by addition of 1,10-phenanthroline (36 mg,0.2 mmol) in methanol (10 mL). The mixture was stirred for another 30 min at room temperature to give a dark-red solution and then filtered.The filtrate was kept in air for a week, forming dark-red block crystals. The crystals were isolated, washed three times with distilled water and dried in a vacuum desiccator containing anhydrous CaCl2. Yield: 87.9 mg (81%). Anal. Calcd for C24H19BrCuN2O4 (542.86): C,53.10; H, 3.52 and N, 5.16. Found: C, 53.12; H, 3.53 and N, 5.17. IR(KBr, cm-1): 3500, 3041, 1986, 1837, 1628, 1590, 1568, 1510, 1418,1344, 1196, 1159, 1106, 993, 855, 773, 720, 672, 631, 551, 548, 528,468, 455, 430.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Gou, Yi; Zhang, Zhan; Qi, Jinxu; Liang, Shichu; Zhou, Zuping; Yang, Feng; Liang, Hong; Journal of Inorganic Biochemistry; vol. 153; (2015); p. 13 – 22;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Discovery of Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 7787-70-4, Copper(I) bromide. This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.7787-70-4

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67412; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”