A new application about 1111-67-7

1111-67-7, If you are hungry for even more, make sure to check my other article about 1111-67-7

1111-67-7, Chemistry can be defined as the study of matter and the changes it undergoes. You¡¯ll sometimes hear it called the central science because it is the connection between physics and all the other sciences, starting with biology.1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS, introducing its new discovery.

Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction

Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu7S4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu7S4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu7S4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm-2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu7S4. This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.

1111-67-7, If you are hungry for even more, make sure to check my other article about 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

To a Schlenk flask containing deoxygenated absolute ethanol (50 mL) was added in the following order, the CuBr (0.19 mmol, 0.027 g) and the ligand (L) (0.38 mmol, 0.10 g). The resulting solution was stirred at room temperature for 14 h. The solution was concentrated and a white precipitate appeared. The solid obtained was filtered off, and washed with diethyl ether (5 mL) under anaerobic conditions and dried under vacuum. 5: (Yield. 82%). Anal. Calc. for C30H28CuN8O2 (596.14 amu): C, 53.30; H, 4.17; N, 16.57. Found: C, 53.56; H, 4.27; N, 16.46%. Conductivity (Omega-1 cm2 mol-1, 1.2 * 10-3 M in CH3OH): 90. IR: (KBr, cm-1): 3325 nu(O-H), 3075 nu(C-H)ar, 2941 nu(C-H)al, 1604-1566 (nu(C=C), nu(C=N))ar, 1464 (delta(C=C), delta(C=N))ar, 1098, 1086 delta(C-H)ar,ip, 765, 696 delta(C-H)ar,oop. 1H NMR: (DMSO-d6 solution, 250 MHz, 298 K) delta: 8.67/8.62 [1H/1H, d, 3J = 4.7 Hz, 3J = 4.8 Hz, Hortho/Hortho’], 8.52/8.08 [1H/1H, t, 3J = 7.3 Hz, 3J = 7.0 Hz, Hpara/Hpara’], 8.05/7.94 [1H/1H, d, 3J = 7.3 Hz, H4/H4′], 7.62 [1H, s, Hpz], 7.83/7.55 [1H/1H, m, Hmeta/Hmeta’], 4.54 [2H, t, 3J = 5.1 Hz, NCH2-CH2OH], 4.02 [2H, t, 3J = 5.1 Hz, NCH2-CH2OH], 4.02 [2H,t, 3J = 5.1 Hz, NCH2-CH2OH]. In this complex, the signal attributableto proton hydroxyl (OH) is not observed. 13C{1H] NMR:(DMSO-d6 solution, 63 MHz, 298 K) delta: 158.5/153.2 (Cortho/Cortho’),143.4/140.2 (Cpara/Cpara’), 129.3/127.2 (C4/C40), 126.1/123.4 (Cmeta/Cmeta’), 108.2 (Cpz), 64.5, (NCH2-CH2OH), 58.6 (NCH2-CH2OH)ppm. ESI(+)(m/z) (%) = 596 (100%) [Cu(L)2]+.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Guerrero, Miguel; Calvet, Teresa; Font-Bardia, Merce; Pons, Josefina; Polyhedron; vol. 119; (2016); p. 555 – 562;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4,7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

CuBr (0.2 g, 1.39 mmol) wasdissolved in a mixture of dichloromethane (30 ml) and acetonitrile (30 ml) and then 2-benzylpyridine (0.23 g, 1.39 mmol)dissolved in dichloromethane (20 ml) was added. The mixture was stirred for 2 h at room temperature and allowed to standovernight. The next day the colour of the solution was green indicating the oxidation of Cu(I) to Cu(II) and the green solidwas filtered off and recrystallized from methanol. Yield (70%).

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Aguirrechu-Comeron; Pasan; Gonzalez-Platas; Ferrando-Soria; Hernandez-Molina; Journal of Structural Chemistry; vol. 56; 8; (2015); p. 1563 – 1571; Zh. Strukt. Kim.; vol. 56; 8; (2015); p. 1624 – 1632;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

7787-70-4 is used more and more widely, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid.

7787-70-4 is used more and more widely, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, The ligand (50.0 mg, 0.11 mmol) was added to a suspension of copper(II) halogenide (0.11 mmol) in methanol (3 ml). The mixture was stirred at r. t. for 16 h. The precipitate was then filtered off and dried in vacuo. The pure compounds were obtained by recrystallization from dichloromethane and pentane.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 142-71-2

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) acetate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 142-71-2, its synthesis route is as follows.

General procedure: Porphyrins 1-6 (Aldrich, 97%), organic solvents (Merck, 99%), and inorganic salts (Acros, 99%) were used as received. The complex formation was studied by recording electronic absorption spectra of the solutions using a Cary 300 spectrophotometer (Varian). To do so,solutions of the studied porphyrin (2.5¡Á10-5 mol/L)and the salt (2.5¡Á10-3 mol/L) in an organic solvent were put in the cell maintained at constant temperature(¡À0.1C), and the absorbance at the wave length corresponding to the maximum in the spectrum of the formed metal porphyrinate was monitored. Kinetic studies of the complex formation were performed over 288-363 K range.

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Maltceva; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 87; 6; (2017); p. 1175 – 1183; Zh. Obshch. Khim.; vol. 87; 6; (2017); p. 955 – 963,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate hydrate, 6046-93-1

6046-93-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate hydrate, cas is 6046-93-1,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

A mixed solvent of 75 ml of chlorobenzene and 50 ml of N,N-dimethylformamide (DMF) was added to a 250 ml three-neck distillation flask. Add 5,10,15,20-tetraphenylporphyrin (H2TPP) (0.50 g, 0.81 mmol) start stirring, after the solid is dissolved, add an appropriate amount of copper acetate monohydrate (Cu(OAc)2*H2O) (0.324 g 1.62 mmol). Put about 3g of potassium carbonate (K2CO3) in the alkali storage chamber, the mixture in the reaction kettle was heated to 150 C and kept under reflux. The progress of the reaction (UV-Vis) is monitored by thin layer chromatography (TLC) or ultraviolet visible absorption spectroscopy until the complete reaction of H2TPP is completed. The solvent is distilled off under vacuum. The remaining solid was dissolved in 150 ml of chloroform. Wash three times with 50 ml of water each time, then collect these liquids in a static layer. The organic layer was further washed three times with 50 ml of saturated sodium bicarbonate solution. Then dried with potassium sulfate (K2SO4), The solvent is distilled off under vacuum. The remaining solid was recrystallized from chloroform/heptane. A purple crystalline solid product of 0.526 g was obtained in a yield of 96%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate hydrate, 6046-93-1

Reference£º
Patent; Guangzhou Lvying Environmental Protection Technology Co., Ltd.; Yao Shu; Chen Liangming; Qiao Nasen¡¤wudong; (8 pag.)CN109651381; (2019); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) acetate, and cas is 142-71-2, its synthesis route is as follows.

A mixture of 0.04 g (0.065 mmol) of porphin 1 and 0.118 g (0.65 mmol) of Cu(OAc)2 in 40 mL of dimethylformamide was heated under reflux for 15 s. The reaction mixture was cooled, water and solid NaCl was added, the precipitate was separated by filtration, washed with water, dried, and chromatographed on aluminum oxide using chloroform as an eluent to give 0.038 g (0.0562 mmol) (86%) of compound 5. MS (m/z (Irel, %)): 675 (97) [M]+; for C44H28N4Cu calcd.: 676. IR (nu, cm-1): 2926 s, 2855 m nu(C-H, Ph), 1694 w,1598 m 1489 s nu(C=C, Ph), 1441 m nu(C=N), 1371 m, 1346 s nu(C-N), 1146 s, 1071 s delta(C-H, Ph), 1005 s nu(C-C), 861 m, 794 m gamma(C-H, pyrrole ring), 742 m, 696 m gamma(C-H, h), 480 nu(Cu-N).

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4,7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 0.022g (0.222mmol) of CuCl was added to 0.180g (0.109mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution at -35C. After stirring the resultant solution for 5min, the yellowish brown solution formed, which was filtered, and the filtrate was concentrated. A solution of Et2O (60mL) was added into the filtrate to precipitate the product at -35C. The precipitate was then washed with Et2O and dried to give [PPh4]2[3a] (0.107g, 0.058mmol, 53% based on [PPh4]2[1]). Similarly, under the same reaction conditions, using CuBr, we have isolated a yellowish brown solid of [PPh4]2[3b] (80% based on [PPh4]2[1]) upon crystallization from Et2O/MeCN.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”