Some tips on 34946-82-2

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

It is a common heterocyclic compound, the copper-catalyst compound, Copper(II) trifluoromethanesulfonate, cas is 34946-82-2 its synthesis route is as follows.,34946-82-2

Compound 7.5 (4.7 mg, 0.0086 mmol) and copper (II) trifluoromethansulfonate (3.1 mg, 0.0086 mmol) were added to 0.5 mL of MeOH and allowed to stir at room temperature for 2 hours. The MeOH was removedin vacuoto yield a white solid (7.8 mg, quantitative).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; da Silva, Sara R.; Paiva, Stacey-Lynn; Bancerz, Matthew; Geletu, Mulu; Lewis, Andrew M.; Chen, Jijun; Cai, Yafei; Lukkarila, Julie L.; Li, Honglin; Gunning, Patrick T.; Bioorganic and Medicinal Chemistry Letters; vol. 26; 18; (2016); p. 4542 – 4547;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

General procedure: Representative procedure for 17: A Schlenk tube was charged with 2 (400mg, 2.03mmol), dry THF (10mL), anhydrous cobalt(II) chloride and a stirring bar. In a separate Schlenk tube, a solution of lithium diisopropylamide (LDA) was prepared in THF (25mL) from diisopropylamine (700muL, 5.0 mmol) and n-butyl lithium (3.15mL of a 1.6M solution in hexane, 5.0 mmol). The LDA-solution was added under protection from air to the solution of 2 and CoCl2. After the mixture has been stirred overnight, all volatile materials were removed on a vacuum line. The Schlenk vessel was transferred into the glove-box and the dark colored solid residue was dissolved in a small volume of dry dichloromethane. Layering the solution with dry n-hexane afforded brown single crystals of the product.

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Article; Graser, Markus; Kopacka, Holger; Wurst, Klaus; Mueller, Thomas; Bildstein, Benno; Inorganica Chimica Acta; vol. 401; (2013); p. 38 – 49;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.

General procedure: Copper(II) complexes with 4,7-phenanthroline, [Cu(NO3)2(4,7-Hphen)2](NO3)2 (1) and [Cu(CF3SO3)(4,7-phen)2(H2O)2]CF3SO3 (2)were synthesized according to the modified procedure for thepreparation of copper(II) complexes with aromatic N-heterocycles[22]. The solution of 0.5 mmol of CuX2 salt (120.8 mg of Cu(NO3)2-3H2O for 1 and 180.8 mg of Cu(CF3SO3)2 for 2) in 5.0 mL of ethanolwas added slowly under stirring to the solution containing anequimolar amount of 4,7-phen (90.1 mg) in 5.0 mL of ethanol.The reaction mixture was stirred at room temperature for 3-4 h.Complex 1 crystallized from the mother ethanol solution after itscooling in the refrigerator for three days, while those of complex2 were obtained after recrystallization of the solid product precipitatedfrom the reaction mixture in 10.0 mL of acetonitrile. Theblue crystals of 1 and green crystals of 2 suitable for single-crystalX-ray crystallography were filtered off and dried at ambient temperature.Yield (calculated on the basis of 4,7-phen): 99.4 mg(59%) for 1 and 127.0 mg (67%) for 2.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Stevanovi?, Nevena Lj.; Andrejevi?, Tina P.; Crochet, Aurelien; Ilic-Tomic, Tatjana; Dra?kovi?, Nenad S.; Nikodinovic-Runic, Jasmina; Fromm, Katharina M.; Djuran, Milo? I.; Gli?i?, Biljana ?.; Polyhedron; vol. 173; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about 34946-82-2

The chemical industry reduces the impact on the environment during synthesis,34946-82-2,Copper(II) trifluoromethanesulfonate,I believe this compound will play a more active role in future production and life.

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Copper(II) trifluoromethanesulfonate (5 g, 14 mmol) was dissolved in methanol (25 mL). Pyridine(12 mL, 149 mmol) was added dropwise (exothermic reaction was observed) and the reaction mixturewas stirred for 30 min. The mixture was left at ambient temperature for 1 h and thereafter in fridge (at5 C) overnight. The blue crystalline precipitate was filtered off, recrystallized from 20% Py in MeOHand dried under a stream of air affording the desired product [56]. Yield 8.5 g, 91%Appearance blue solidMolecular formula C22H20CuF6N4O6S2Molar mass 678.08042Anal.Calcd for C22H20CuF6N4O6S2: C, 38.97; H, 2.97; N, 8.26. Found: C,39.1 < 0.1; H, 3.16 0.09; N, 8.33 0.01. The chemical industry reduces the impact on the environment during synthesis,34946-82-2,Copper(II) trifluoromethanesulfonate,I believe this compound will play a more active role in future production and life. Reference£º
Article; Zarrad, Fadi; Zlatopolskiy, Boris D.; Krapf, Philipp; Zischler, Johannes; Neumaier, Bernd; Molecules; vol. 22; 12; (2017);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(II) trifluoromethanesulfonate

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the copper-catalyst compound, Copper(II) trifluoromethanesulfonate, cas is 34946-82-2 its synthesis route is as follows.

The ligand (75.9 mg, 0.12 mmol) was dissolved in THF (4 ml) and added to a suspension of sodium hydride (11.8 mg, 0.49 mmol) in THF (2 ml) at 0 C. The resulting yellow mixture was stirred at 0 C for 1 h and at r. t. for 2 h. Afterwards the solution was added dropwise to a solution of copper(II) triflate (44.3 mg, 0.12 mmol) in THF (2 ml). The dark brown solution was stirred at r. t. for 16 h. After filtration the solvent was removed in vacuo and the brown solid purified by recrystallisation from dichloromethane and pentane. 6: 60.8 mg, 60.9%. C41H36N5O5SF3Cu¡¤3CH2Cl2: Anal. Calc. C, 46.35; H, 4.24; N, 6.14. Found: C, 46.70; H, 4.12; N, 6.19%. HR-MS: C40H36N5O2Cu Calc. 681.2159. Found: 681.2148 (100.0), IR: nunu [cm-1]=3060, 2929, 2855, 1640, 1592, 1530, 1444, 1262, 1174, 1097, 1044, 879, 646.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Isothiazole

The chemical industry reduces the impact on the environment during synthesis,34946-82-2,Copper(II) trifluoromethanesulfonate,I believe this compound will play a more active role in future production and life.

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Tert-leucine phosphinoazomethinylate potassium salt (100 mg, 0.23 mmol, 1 eq.) and copper bis-triflate Cu(OTf)2 (114 mg, 0.23 mmol, 1 eq.) are placed in a round-bottom flask. Anhydrous THF is then added (9 mL, 40 mL per mmol). The reaction mixture is agitated at room temperature for 1 hour. The solvent is evaporated and the product is dried under reduced pressure. A green powder is obtained (210 mg, 98%).

The chemical industry reduces the impact on the environment during synthesis,34946-82-2,Copper(II) trifluoromethanesulfonate,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Mauduit, Marc; Rix, Diane; Crevisy, Christophe; Wencel, Joanna; US2010/267956; (2010); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 34946-82-2

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

In a 20 mL vial with heating, anhydrous copper(II) trifluoromethanesulfonate(221 mg, 0.61 mmol) was dissolved in 15 mL of90% EtOH. After cooling to room temperature, HL1 (200 mg,0.61 mmol) was added to the pale blue solution, which became bluegreen.The mixture was heated to boiling to ensure all reactants weredissolved, and then cooled to room temperature, at which point thesolution was green-blue and contained a teal precipitate. The precipitatewas isolated via gravity filtration as a bright teal powder (256 mg, 71%). HR-MS (ESI, MeOH) m/z: [L1Cu]+ Calcd. for[CuC20H12N3O2]+ 389.0226; found 388.9763; m/z [L1CuII(EtOH)]+Calcd. for [CuC32H18N3O3]+ 435.0644; found 435.0132 (Fig. S4). Anal.Calc. for CuC21H14N3O6SF3: C, 45.29; H, 2.53; N, 7.54. Found: C, 45.06;H, 2.74; N, 8.09. X-ray quality crystals in the form of teal blocks weregrown upon slow diffusion of anhydrous THF into a concentrated solutionof the compound in EtOH at room temperature.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; Elwell, Courtney E.; Neisen, Benjamin D.; Tolman, William B.; Inorganica Chimica Acta; vol. 485; (2019); p. 131 – 139;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 34946-82-2

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.

A solution of Cu(OTf)2 (90.0 mg, 0.249 mM, OTf = trifluormethansulfonate) in methanol was added to a solution of HLpz (53.5 mg,0.250 mM) and triethylamine (25.0 mg, 0.250 mM) in methanol, affording a dark green solution. A solution of excess 4,4-bipyridine (4,4-bipy) was layered on the above solution, from which purple crystals of 1 suitable for X-ray analysis were obtained. Yield: 86 mg, 68%. Anal. Calcd for C34H26Cu2F6N10O8S2: C, 40.52; H, 2.60; N, 13.90. Found: C, 40.27;H, 2.53; N, 13.63. FTIR (KBr): 3447, 1647, 1416, 1380, 1291, 1245, 1224, 1158, 1033,816, 772, 638, 518 cm-1. ESI-MS (MeOH): m/z = 276 [Cu(Lpz)]+, 432 [Cu(Lpz)(4,4-bipy)]+, 490 [Cu(Lpz)2 + H]+.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Houser, Robert P.; Wang, Zhaodong; Powell, Douglas R.; Hubin, Timothy J.; Journal of Coordination Chemistry; vol. 66; 23; (2013); p. 4080 – 4092;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 34946-82-2

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the copper-catalyst compound, Copper(II) trifluoromethanesulfonate, cas is 34946-82-2 its synthesis route is as follows.

Cu (CF3 SO3 )2 And 4 – (3 – (4H – 1,2, 4 – triazole -4 – yl) phenyl) – 4H – 1,2, 4 – triazole) (L) in a molar ratio of 1:1; L (0.0424 g, 0.2 mmol), Cu (CF3 SO3 )2 (0.0691 g, 0.2 mmol), H2 O (6 ml), CH3 CN (4 ml), water heat 160 o C three days after cooling to room temperature. After operates the cauldron X – ray single crystal diffraction analysis is yellow rod-like crystal. Yield: 35% (calculated on the basis of L). Elemental analysis (C33 H26 Cu3 F9 N18 O10 S3 ) Theoretical value (%): C, 30.67; H, 2.03; N, 19.51. The measured value: C, 30.69; H, 2.06; N, 19.59. We also tried other proportions, for example Cu (CF3 SO3 )2 And L in a molar ratio of 2:1, irrespective of the length of the water heat reaction time, are not crystalline compound. Therefore Cu (CF3 SO3 )2 And L in a molar ratio of 1:1 is the best reaction mixture ratio.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104557982; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Copper(II) trifluoromethanesulfonate

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.

General procedure: A mixture of ligand L (23.1 mg, 55 mumol) and appropriate metalsalt (55 mumol) in nitromethane (20 mL) was stirred at room temperaturefor 48 h under the normal atmosphere. The complexeswere isolated as a solids by evaporation of the solvent and followedby a dissolution of the residue in the minimum volume of CH3CNand precipitation of the complexes by the gradual addition ofether. Obtained solids were filtered off and dried in air.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Wa??sa-Chorab, Monika; Marcinkowski, Dawid; Kubicki, Maciej; Hnatejko, Zbigniew; Patroniak, Violetta; Polyhedron; vol. 118; (2016); p. 1 – 5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”