Analyzing the synthesis route of 34946-82-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

LigandH2L2 (100 mg, 0.275 mmol)was added to the solutionof Cu(OTf)2 (298 mg, 0.826 mmol) in 10mLMeNO2 forminga clear light blue coloured solution. The reaction mixture wasstirred for 30 min at 50 C. The solution was filtered andleft in open air for slow evaporation. X-ray quality light bluecrystals were collected after 24 h. (Yield: 64%). Anal. Calcd.for C24H36Cu4F12N10O30S4: C, 18.54; H, 2.33; N, 9.01%.Found. C, 18.14; H, 2.82; N, 8.74%. IR (nu, cm-1): 3424.20(H2O); 1681.07 (C=O); 1638.57 (C=N).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.

The copper(II) complexes with terpy ligand, [Cu(terpy)(ClO4)2(H2O)] (1) and [Cu(terpy)2](CF3SO3)2¡¤2H2O (2), were synthesized by modification of a previously described method for the preparation of [Cu(terpy)(H2O)](CF3SO3)2 complex [42]. The solution of 1.0mmol of terpy (233.3mg) in 2.0mL of methanol for 1 and ethanol for 2 was added slowly under stirring to the solution containing 1.0mmol of the corresponding copper(II) salt (370.5mg of Cu(ClO4)2¡¤6H2O (1) and 361.7mg of Cu(CF3SO3)2 (2)) in 5.0mL of water. The reaction mixture was stirred at room temperature for 3h. The blue crystals of 1 and 2 suitable for single-crystal X-ray analysis were grown by slow evaporation of the resulting solutions at room temperature. These crystals were filtered off and dried at ambient temperature. The yield (calculated on the basis of terpy) was 73% (375.0mg) for 1 and 78% (337.1mg) for 2.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Gli?i?, Biljana ?.; Nikodinovic-Runic, Jasmina; Ilic-Tomic, Tatjana; Wadepohl, Hubert; Veselinovi?, Aleksandar; Opsenica, Igor M.; Djuran, Milo? I.; Polyhedron; vol. 139; (2018); p. 313 – 322;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

To a solution of ligand L1 (50 mg, 0.2 mmol) in ethyl acetate(3 mL) was added a saturated solution of copper(II) trifluoromethanesulfonate(Cu(OTf)2) in ethyl acetate (2 mL).A blue-green precipitate appeared within 10 min, whichwas transformed into green-brown hexagonal crystalsduring slow evaporation of the solvent on standing withair contact. The crystals were collected by filtration withsuction, washed with a small volume of ethyl acetate toremove co-precipitated Cu(OTf)2. Yield: 85 mg (95%); M.p.272-274C. – IR (KBr): = 3262 m br (NH), 3147 w, 3103w, 1645 m, 1597 s, 1296 vs, 1253 vs, 1228 s, 1148 s, 1076 m,1059 m, 1029 vs, 757 w, 729 s, 629 s, 575 m, 520 m cm-1. -MS ((+)-MALDI-TOF): m/z (%) = 666.24 (100) [M-CF3SO3]+,516.26 (15) [M-2CF3SO3-H]+, 228.16 (74) [L1+H]+. – Anal. forC26H26CuF6N10O6S2 (816.21): calcd. C 38.26, H 3.21, N 17.16;found C 38.25, H 3.49, N 16.92.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Thiomorpholine 1,1-dioxide

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

To a solution of 2.00 g (4.82 mmol) of the above ieri-butyl ester in dimethylsulfoxide (15 mL) is added 1.10 mL (10.1 mmol) of dimethylethylenediamine followed by 0.983 g (9.64 mmol) of sodium methanesulfinate, and 1.74 g (4.82 mmol) of copper (II) triflate. The mixture is heated at 130 C under argon for 2 hours. The mixture is cooled to room temperature and diluted with water causing a solid to precipitate from solution. The formed solid is collected by filtration, washed with water, and dried on the filter pad. The residue is purified by flash silica gel chromatography to give 1.03 g (52.0%) of (5′- methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-ylmethyl)-carbamic acid ie/ -butyl ester as a brown resin.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 34946-82-2

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.

Copper(II) triflate (50.0 mg, 0.14 mmol) was dissolved in methanol (3 ml) and the ligand (42.8 mg, 0.07 mmol) added. The reaction mixture was stirred at r. t. for 16 h. Then the mixture was evaporated to dryness and the resulting green solid recrystallised from dichloromethane and pentane. 5: 23.6 mg, 34.0%. C42H37N5O8S2F6Cu¡¤2CH2Cl2: Anal. Calc. C, 43.16; H, 3.30; N, 5.59. Found: C, 42.72; H, 3.71; N, 5.87%. HR-MS: C40H36N5O263Cu Calc. 681.2239. Found: 681.2202 (100.0), C40H36N5O265Cu Calc. 683.2147. Found 683.2105 (65.1). IR: nunu [cm-1]=3066, 2962, 2870, 1657, 1598, 1535, 1484, 1454, 1265, 1172, 1109, 1032, 953, 756, 639. Magnetic susceptibility in CD2Cl2 (295 K): mueff=1.78muB.

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Triphenyl methyl olmesartan

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole) (L)For 1: 1;L (0.0424 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL)CH3CN (4 mL), water heat 100 oC three days later slowly to room temperature.After the opening, there are yellow rod-like crystals suitable for X-ray single crystal diffraction analysis. Yield: 35% (based on L calculation).

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104557984; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

34946-82-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) trifluoromethanesulfonate, cas is 34946-82-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Representative procedure for 17: A Schlenk tube was charged with 2 (400mg, 2.03mmol), dry THF (10mL), anhydrous cobalt(II) chloride and a stirring bar. In a separate Schlenk tube, a solution of lithium diisopropylamide (LDA) was prepared in THF (25mL) from diisopropylamine (700muL, 5.0 mmol) and n-butyl lithium (3.15mL of a 1.6M solution in hexane, 5.0 mmol). The LDA-solution was added under protection from air to the solution of 2 and CoCl2. After the mixture has been stirred overnight, all volatile materials were removed on a vacuum line. The Schlenk vessel was transferred into the glove-box and the dark colored solid residue was dissolved in a small volume of dry dichloromethane. Layering the solution with dry n-hexane afforded brown single crystals of the product.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) trifluoromethanesulfonate, 34946-82-2

Reference£º
Article; Graser, Markus; Kopacka, Holger; Wurst, Klaus; Mueller, Thomas; Bildstein, Benno; Inorganica Chimica Acta; vol. 401; (2013); p. 38 – 49;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

A new synthetic route of Copper(II) trifluoromethanesulfonate

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

The copper-catalyst compound, cas is 34946-82-2 name is Copper(II) trifluoromethanesulfonate, mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

To a solution of 2.00 g (4.82 mmol) of the above ieri-butyl ester in dimethylsulfoxide (15 mL) is added 1.10 mL (10.1 mmol) of dimethylethylenediamine followed by 0.983 g (9.64 mmol) of sodium methanesulfinate, and 1.74 g (4.82 mmol) of copper (II) triflate. The mixture is heated at 130 C under argon for 2 hours. The mixture is cooled to room temperature and diluted with water causing a solid to precipitate from solution. The formed solid is collected by filtration, washed with water, and dried on the filter pad. The residue is purified by flash silica gel chromatography to give 1.03 g (52.0%) of (5′- methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-ylmethyl)-carbamic acid ie/ -butyl ester as a brown resin.

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : Copper(II) trifluoromethanesulfonate

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

Cu (CF3 SO3 )2 And 4 – (3 – (4H – 1,2, 4 – triazole -4 – yl) phenyl) – 4H – 1,2, 4 – triazole) (L) in a molar ratio of 1:1; L (0.0424 g, 0.2 mmol), Cu (CF3 SO3 )2 (0.0691 g, 0.2 mmol), H2 O (6 ml), CH3 CN (4 ml), water heat 160 o C three days after cooling to room temperature. After operates the cauldron X – ray single crystal diffraction analysis is yellow rod-like crystal. Yield: 35% (calculated on the basis of L). Elemental analysis (C33 H26 Cu3 F9 N18 O10 S3 ) Theoretical value (%): C, 30.67; H, 2.03; N, 19.51. The measured value: C, 30.69; H, 2.06; N, 19.59. We also tried other proportions, for example Cu (CF3 SO3 )2 And L in a molar ratio of 2:1, irrespective of the length of the water heat reaction time, are not crystalline compound. Therefore Cu (CF3 SO3 )2 And L in a molar ratio of 1:1 is the best reaction mixture ratio.

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104557982; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

A new synthetic route of Copper(II) trifluoromethanesulfonate

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

A solution of Cu(OTf)2 (90.0 mg, 0.249 mM, OTf = trifluormethansulfonate) in methanol was added to a solution of HLpz (53.5 mg,0.250 mM) and triethylamine (25.0 mg, 0.250 mM) in methanol, affording a dark green solution. A solution of excess 4,4-bipyridine (4,4-bipy) was layered on the above solution, from which purple crystals of 1 suitable for X-ray analysis were obtained. Yield: 86 mg, 68%. Anal. Calcd for C34H26Cu2F6N10O8S2: C, 40.52; H, 2.60; N, 13.90. Found: C, 40.27;H, 2.53; N, 13.63. FTIR (KBr): 3447, 1647, 1416, 1380, 1291, 1245, 1224, 1158, 1033,816, 772, 638, 518 cm-1. ESI-MS (MeOH): m/z = 276 [Cu(Lpz)]+, 432 [Cu(Lpz)(4,4-bipy)]+, 490 [Cu(Lpz)2 + H]+.

As the rapid development of chemical substances, we look forward to future research findings about 34946-82-2

Reference£º
Article; Houser, Robert P.; Wang, Zhaodong; Powell, Douglas R.; Hubin, Timothy J.; Journal of Coordination Chemistry; vol. 66; 23; (2013); p. 4080 – 4092;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”