The origin of a common compound about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.578743-87-0,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,as a common compound, the synthetic route is as follows.

578743-87-0, General procedure: Cu(I)-NHC 1a-g (0.04 mmol, 1.0 equiv) and CDCl3 (0.4 mL, degassed by bubbling argon for 30 min) were added into a flame-dried NMR tube. (CD3)2SO (0.4 mL) was used for 1h (0.04 mmol), 1i (0.02 mmol), and 1j (0.02 mmol). The NMR tube was closed with a septum and equipped with an air balloon (approximate 500 mL) containing approximately 100 mL of O2 (4.5 mmol, 112 equiv.) and approximately 12.6 mL of H2O (gas, 0.56 mmol, 14 equiv., air relative humidity = 75%). The solution (not agitated) was placed at room temperature and was monitored by 1H NMR. 100 C was used for the decomposition of 1h, and 150 C was used for the decomposition of 1i and 1j. The precipitate in the NMR tube was removed by quick filtration using a membrane filter before each 1H NMR measurement. The ratio of Cu-NHC, urea, and imidazolium were calculated through the integration of 1H NMR, using the normalization method. The characterization of products could be found in the previous study [32].

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Li, Dazhi; Ollevier, Thierry; Journal of Organometallic Chemistry; vol. 906; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”