HPLC of Formula: CCuNS, With the volume and accessibility of scientific research increasing across the world, it has never been more important to continue building, we’ve spent the past two centuries establishing. Mentioned the application of 1111-67-7, Name is Cuprous thiocyanate.
Through the reaction of CuSCN with AsPh-(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR? 2)4] (1-3) (1: R = R? = nPr, 2: R = R? = Et; 3: R = Me, R? = nPr) and [Cu14(AsPh)6(SCN)2-(PEt2Ph) 8] (4) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR?2) 8] (5-6) (5: R = R? = Et; 6: R = Me, R? = nPr), [Cu12(AsPh)6(PPh3)6] (7) and [Cu10(AsPh)4Cl2-(PMe3)8] (8). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR?2) 6] (9-11) (9: R = R? = Et; 10: R = Ph, R? = Et; 11: R = Et, R? = Ph) and [Cu8(AsSiMe3)4-(PtBu 3)4] (12) can be obtained. In each case the products were characterised by single-crystal-X-ray-structure-analyses. As the main structure element 1-3 each have two As4Ph42-chains as ligands. In contrast 4-12 contain discrete AsR2–ligands. WILEY-VCH Verlag GmbH, 2001.
Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 1111-67-7 is helpful to your research.
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”